--- tags: - generated_from_trainer datasets: - universal_dependencies metrics: - precision - recall - f1 - accuracy inference: false model-index: - name: distil-slovakbert-upos results: - task: name: Token Classification type: token-classification dataset: name: universal_dependencies sk_snk type: universal_dependencies args: sk_snk metrics: - name: Precision type: precision value: 0.9771104035797263 - name: Recall type: recall value: 0.9785418821096173 - name: F1 type: f1 value: 0.9778256189451022 - name: Accuracy type: accuracy value: 0.9800851200513933 --- # distil-slovakbert-upos This model is a fine-tuned version of [crabz/distil-slovakbert](https://huggingface.co/crabz/distil-slovakbert) on the universal_dependencies sk_snk dataset. It achieves the following results on the evaluation set: - Loss: 0.1207 - Precision: 0.9771 - Recall: 0.9785 - F1: 0.9778 - Accuracy: 0.9801 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 266 | 0.2168 | 0.9570 | 0.9554 | 0.9562 | 0.9610 | | 0.3935 | 2.0 | 532 | 0.1416 | 0.9723 | 0.9736 | 0.9730 | 0.9740 | | 0.3935 | 3.0 | 798 | 0.1236 | 0.9722 | 0.9735 | 0.9728 | 0.9747 | | 0.0664 | 4.0 | 1064 | 0.1195 | 0.9722 | 0.9741 | 0.9732 | 0.9766 | | 0.0664 | 5.0 | 1330 | 0.1160 | 0.9764 | 0.9772 | 0.9768 | 0.9789 | | 0.0377 | 6.0 | 1596 | 0.1194 | 0.9763 | 0.9776 | 0.9770 | 0.9790 | | 0.0377 | 7.0 | 1862 | 0.1188 | 0.9740 | 0.9755 | 0.9748 | 0.9777 | | 0.024 | 8.0 | 2128 | 0.1188 | 0.9762 | 0.9777 | 0.9769 | 0.9793 | | 0.024 | 9.0 | 2394 | 0.1207 | 0.9774 | 0.9789 | 0.9781 | 0.9802 | | 0.0184 | 10.0 | 2660 | 0.1207 | 0.9771 | 0.9785 | 0.9778 | 0.9801 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.0 - Datasets 1.16.1 - Tokenizers 0.11.0