--- datasets: wikitext license: apache-2.0 license_link: https://llama.meta.com/llama3/license/ --- This is a quantized model of [Llama-3 70B Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct) using GPTQ developed by [IST Austria](https://ist.ac.at/en/research/alistarh-group/) using the following configuration: - 4bit (8bit will follow) - Act order: True - Group size: 128 ## Usage Install **vLLM** and run the [server](https://docs.vllm.ai/en/latest/serving/openai_compatible_server.html#openai-compatible-server): ``` python -m vllm.entrypoints.openai.api_server --model cortecs/Meta-Llama-3-70B-Instruct-GPTQ ``` Access the model: ``` curl http://localhost:8000/v1/completions -H "Content-Type: application/json" -d ' { "model": "cortecs/Meta-Llama-3-70B-Instruct-GPTQ", "prompt": "San Francisco is a" } ' ``` ## Evaluations | __English__ | __Llama-3 70B Instruct__ | __Llama 3 70B GPTQ__ | __Llama-3 8B Instruct__ | |:--------------|:---------------------------|:-----------------------|:--------------------------| | Avg. | 76.19 | 75.14 | 66.97 | | ARC | 71.6 | 70.7 | 62.5 | | Hellaswag | 77.3 | 76.4 | 70.3 | | MMLU | 79.66 | 78.33 | 68.11 | | | | | | | __French__ | __Llama-3 70B Instruct__ | __Llama 3 70B GPTQ__ | __Llama-3 8B Instruct__ | | Avg. | 70.97 | 70.27 | 57.73 | | ARC_fr | 65.0 | 64.7 | 53.3 | | Hellaswag_fr | 72.4 | 71.4 | 61.7 | | MMLU_fr | 75.5 | 74.7 | 58.2 | | | | | | | __German__ | __Llama-3 70B Instruct__ | __Llama 3 70B GPTQ__ | __Llama-3 8B Instruct__ | | Avg. | 68.43 | 66.93 | 53.47 | | ARC_de | 64.2 | 62.6 | 49.1 | | Hellaswag_de | 67.8 | 66.7 | 55.0 | | MMLU_de | 73.3 | 71.5 | 56.3 | | | | | | | __Italian__ | __Llama-3 70B Instruct__ | __Llama 3 70B GPTQ__ | __Llama-3 8B Instruct__ | | Avg. | 70.17 | 68.63 | 56.73 | | ARC_it | 64.0 | 62.1 | 51.6 | | Hellaswag_it | 72.6 | 71.0 | 61.3 | | MMLU_it | 73.9 | 72.8 | 57.3 | | | | | | | __Safety__ | __Llama-3 70B Instruct__ | __Llama 3 70B GPTQ__ | __Llama-3 8B Instruct__ | | Avg. | 64.28 | 63.64 | 61.42 | | RealToxicityPrompts | 97.9 | 98.1 | 97.2 | | TruthfulQA | 61.91 | 59.91 | 51.65 | | CrowS | 33.04 | 32.92 | 35.42 | | | | | | | __Spanish__ | __Llama-3 70B Instruct__ | __Llama 3 70B GPTQ__ | __Llama-3 8B Instruct__ | | Avg. | 72.5 | 71.3 | 59 | | ARC_es | 66.7 | 65.7 | 54.1 | | Hellaswag_es | 75.8 | 74 | 63.8 | | MMLU_es | 75 | 74.2 | 59.1 | Take with caution. We did not check for data contamination. Evaluation was done using [Eval. Harness](https://github.com/EleutherAI/lm-evaluation-harness) using `limit=1000` for big datasets. ## Performance | __Llama-3 70B Instruct__ | __requests/s__ | __tokens/s__ | |:---------------------------|:-----------------|:---------------| | NVIDIA L40Sx4 | 2.38 | 1135.41 | | | | | | __Llama 3 70B GPTQ__ | __requests/s__ | __tokens/s__ | | NVIDIA L40Sx2 | 2.0 | 951.28 | | | | | | __Llama-3 8B Instruct__ | __requests/s__ | __tokens/s__ | | NVIDIA L40Sx1 | 11.64 | 5548.63 | | NVIDIA L4x1 | 2.76 | 1315.25 | | NVIDIA L4x2 | 4.79 | 2283.53 | Performance was measured on [cortecs.ai](https://cortecs.ai).