revanth1996
commited on
Create configuration_hf_nomic_bert.py
Browse files
configuration_hf_nomic_bert.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import GPT2Config
|
2 |
+
|
3 |
+
|
4 |
+
class NomicBertConfig(GPT2Config):
|
5 |
+
model_type = "nomic_bert"
|
6 |
+
|
7 |
+
def __init__(
|
8 |
+
self,
|
9 |
+
prenorm=False,
|
10 |
+
parallel_block=False,
|
11 |
+
parallel_block_tied_norm=False,
|
12 |
+
rotary_emb_fraction=0.0,
|
13 |
+
fused_dropout_add_ln=False,
|
14 |
+
fused_bias_fc=False,
|
15 |
+
use_flash_attn=False,
|
16 |
+
use_xentropy=False,
|
17 |
+
qkv_proj_bias=True,
|
18 |
+
rotary_emb_base=1000,
|
19 |
+
rotary_emb_scale_base=None,
|
20 |
+
rotary_emb_interleaved=False,
|
21 |
+
mlp_fc1_bias=True,
|
22 |
+
mlp_fc2_bias=True,
|
23 |
+
use_rms_norm=False,
|
24 |
+
causal=False,
|
25 |
+
type_vocab_size=2,
|
26 |
+
dense_seq_output=True,
|
27 |
+
pad_vocab_size_multiple=1,
|
28 |
+
tie_word_embeddings=True,
|
29 |
+
rotary_scaling_factor=1.0,
|
30 |
+
max_trained_positions=2048,
|
31 |
+
**kwargs,
|
32 |
+
):
|
33 |
+
self.prenorm = prenorm
|
34 |
+
self.parallel_block = parallel_block
|
35 |
+
self.parallel_block_tied_norm = parallel_block_tied_norm
|
36 |
+
self.rotary_emb_fraction = rotary_emb_fraction
|
37 |
+
self.tie_word_embeddings = tie_word_embeddings
|
38 |
+
self.fused_dropout_add_ln = fused_dropout_add_ln
|
39 |
+
self.fused_bias_fc = fused_bias_fc
|
40 |
+
self.use_flash_attn = use_flash_attn
|
41 |
+
self.use_xentropy = use_xentropy
|
42 |
+
self.qkv_proj_bias = qkv_proj_bias
|
43 |
+
self.rotary_emb_base = rotary_emb_base
|
44 |
+
self.rotary_emb_scale_base = rotary_emb_scale_base
|
45 |
+
self.rotary_emb_interleaved = rotary_emb_interleaved
|
46 |
+
self.mlp_fc1_bias = mlp_fc1_bias
|
47 |
+
self.mlp_fc2_bias = mlp_fc2_bias
|
48 |
+
self.use_rms_norm = use_rms_norm
|
49 |
+
self.causal = causal
|
50 |
+
self.type_vocab_size = type_vocab_size
|
51 |
+
self.dense_seq_output = dense_seq_output
|
52 |
+
self.pad_vocab_size_multiple = pad_vocab_size_multiple
|
53 |
+
self.rotary_scaling_factor = rotary_scaling_factor
|
54 |
+
self.max_trained_positions = max_trained_positions
|
55 |
+
|
56 |
+
super().__init__(**kwargs)
|