revanth1996 commited on
Commit
f9b9083
·
verified ·
1 Parent(s): f0eba13

Create configuration_hf_nomic_bert.py

Browse files
Files changed (1) hide show
  1. configuration_hf_nomic_bert.py +56 -0
configuration_hf_nomic_bert.py ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import GPT2Config
2
+
3
+
4
+ class NomicBertConfig(GPT2Config):
5
+ model_type = "nomic_bert"
6
+
7
+ def __init__(
8
+ self,
9
+ prenorm=False,
10
+ parallel_block=False,
11
+ parallel_block_tied_norm=False,
12
+ rotary_emb_fraction=0.0,
13
+ fused_dropout_add_ln=False,
14
+ fused_bias_fc=False,
15
+ use_flash_attn=False,
16
+ use_xentropy=False,
17
+ qkv_proj_bias=True,
18
+ rotary_emb_base=1000,
19
+ rotary_emb_scale_base=None,
20
+ rotary_emb_interleaved=False,
21
+ mlp_fc1_bias=True,
22
+ mlp_fc2_bias=True,
23
+ use_rms_norm=False,
24
+ causal=False,
25
+ type_vocab_size=2,
26
+ dense_seq_output=True,
27
+ pad_vocab_size_multiple=1,
28
+ tie_word_embeddings=True,
29
+ rotary_scaling_factor=1.0,
30
+ max_trained_positions=2048,
31
+ **kwargs,
32
+ ):
33
+ self.prenorm = prenorm
34
+ self.parallel_block = parallel_block
35
+ self.parallel_block_tied_norm = parallel_block_tied_norm
36
+ self.rotary_emb_fraction = rotary_emb_fraction
37
+ self.tie_word_embeddings = tie_word_embeddings
38
+ self.fused_dropout_add_ln = fused_dropout_add_ln
39
+ self.fused_bias_fc = fused_bias_fc
40
+ self.use_flash_attn = use_flash_attn
41
+ self.use_xentropy = use_xentropy
42
+ self.qkv_proj_bias = qkv_proj_bias
43
+ self.rotary_emb_base = rotary_emb_base
44
+ self.rotary_emb_scale_base = rotary_emb_scale_base
45
+ self.rotary_emb_interleaved = rotary_emb_interleaved
46
+ self.mlp_fc1_bias = mlp_fc1_bias
47
+ self.mlp_fc2_bias = mlp_fc2_bias
48
+ self.use_rms_norm = use_rms_norm
49
+ self.causal = causal
50
+ self.type_vocab_size = type_vocab_size
51
+ self.dense_seq_output = dense_seq_output
52
+ self.pad_vocab_size_multiple = pad_vocab_size_multiple
53
+ self.rotary_scaling_factor = rotary_scaling_factor
54
+ self.max_trained_positions = max_trained_positions
55
+
56
+ super().__init__(**kwargs)