--- tags: - spacy - token-classification language: - de model-index: - name: de_pipeline results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.8379052369 - name: NER Recall type: recall value: 0.8704663212 - name: NER F Score type: f_score value: 0.8538754765 --- ### Introduction Named Entity Recognition (NER) model for recognizing Bavarian landmarks. Fine-tuned "bert-base-german-cased" with 6450 annotated sentences from subtitles of videos from Bayerischer Rundfunk. | Feature | Description | | --- | --- | | **Name** | `de_pipeline` | | **Version** | `0.1.0` | | **spaCy** | `>=3.3.0,<3.4.0` | | **Default Pipeline** | `transformer`, `ner` | | **Components** | `transformer`, `ner` | | **Author** | Constantin Förster | ### Label Scheme
View label scheme (1 labels for 1 components) | Component | Labels | | --- | --- | | **`ner`** | `LM` |
### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 85.39 | | `ENTS_P` | 83.79 | | `ENTS_R` | 87.05 | | `TRANSFORMER_LOSS` | 4216.96 | | `NER_LOSS` | 78511.31 |