comodoro commited on
Commit
dadce3c
·
1 Parent(s): c13d9c2

Initial model

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
CartPole v1 RL model.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5aa68ce21569fbeebad3fb2c0e782f9e1c897bd6979e2c54e82f8eaa20db2b63
3
+ size 134697
CartPole v1 RL model/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
CartPole v1 RL model/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe43bf22e60>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe43bf22ef0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe43bf22f80>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe43bf29050>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fe43bf290e0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fe43bf29170>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe43bf29200>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fe43bf29290>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe43bf29320>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe43bf293b0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe43bf29440>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fe43bf7b3f0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gASVmwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsEhZRoColDEJqZmcD//3//UHfWvv//f/+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSwSFlGgKiUMQmpmZQP//f39Qd9Y+//9/f5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLBIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQwQBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsEhZRoKolDBAEBAQGUdJRijApfbnBfcmFuZG9tlE51Yi4=",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 4
29
+ ],
30
+ "low": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]",
31
+ "high": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]",
32
+ "bounded_below": "[ True True True True]",
33
+ "bounded_above": "[ True True True True]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLAowGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 2,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 3014656,
46
+ "_total_timesteps": 3000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1653477767.1635447,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gASVjQEAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLBIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAQAAIrvdPEaGy76hhy+85gsGP3xPODu8Oh+8uk4uu9ETkDwlmUA7TP1HvdANNjkHF2I9IbwzvCquAD2SLsE7jrUZvT1xEjxoSZq8nLoVvJI0BD05a9Y7ECZvPlcPB7sGQ6++0wC2O49+Pb2EqYq73ludPQAnFzts+Tw6MBWNOmVDBLwZDay7GP8hvcylAjyDAYQ8RxbfO4paND7qhCY7g5KDvn2JYzrlcnm8ni6/u4Sd+TwZHQ06RLEUvAwtbTv74xQ8sjNYPEVNS75+ikq7h0+cPjac0ruD1b+6+kM9O3f85ztrD5e7zZlSPoq86DvTHpm+bTJ5PCC2Rz6rPnO7khuYvpR0lGIu"
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.004885333333333408,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQH9AAAAAAACMAWyUTfQBjAF0lEdAohDYSBbwB3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKIQ6a9bor51fZQoaAZHQH9AAAAAAABoB030AWgIR0CiEOunEVFhdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAohEnffoA4nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKIRP8XN1Qt1fZQoaAZHQH9AAAAAAABoB030AWgIR0CiEWdzwMH9dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAohGDMTviLnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKIRuCjDbah1fZQoaAZHQH9AAAAAAABoB030AWgIR0CiEa/EwWWQdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAohHNGCqZMXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKIRzNW2gFp1fZQoaAZHQH9AAAAAAABoB030AWgIR0CiEbrpA2Q5dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAohHo6U7jk3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKIR3H9WIXV1fZQoaAZHQH9AAAAAAABoB030AWgIR0CiEeOE25xzdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAohInWtlqanV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKISHXhfjS51fZQoaAZHQH9AAAAAAABoB030AWgIR0CiEi7I1cdHdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAohIxbKRuCXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKISbvlU6xR1fZQoaAZHQH9AAAAAAABoB030AWgIR0CiEodSMtK7dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAohKu8oQWe3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKISzkGzKLd1fZQoaAZHQH9AAAAAAABoB030AWgIR0CiEwMyi22HdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAohL6kRBeHHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKITF7LMcIZ1fZQoaAZHQH9AAAAAAABoB030AWgIR0CiExdkBjnWdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAohMFbRneznV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKITMwXZXdV1fZQoaAZHQH9AAAAAAABoB030AWgIR0CiEyYr8R+SdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAohMuavzOHHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKITcc94eLh1fZQoaAZHQH9AAAAAAABoB030AWgIR0CiE2jneSB9dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAohN7efqX4XV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKITfUhmoR91fZQoaAZHQH9AAAAAAABoB030AWgIR0CiE7nMEA5rdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAokEK3VkMC3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKJBMmce8wp1fZQoaAZHQH9AAAAAAABoB030AWgIR0CiQU53LV4HdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAokGG0TlDGHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKJBftJnQIF1fZQoaAZHQH9AAAAAAABoB030AWgIR0CiQZx20Re1dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAokGcTrVvuXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKJBilLOAy51fZQoaAZHQH9AAAAAAABoB030AWgIR0CiQbwl8gIQdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAokGwGr0aqHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKJBt3Roh6l1fZQoaAZHQH9AAAAAAABoB030AWgIR0CiQftHQQcxdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAokHxnrY5DXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKJCAwQDmr91fZQoaAZHQH9AAAAAAABoB030AWgIR0CiQgTA31jBdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAokJBew9q13V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKJCWO8TSLJ1fZQoaAZHQH9AAAAAAABoB030AWgIR0CiQn6VdHDrdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAokKZSFXaJ3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKJCz6MR6GB1fZQoaAZHQH9AAAAAAABoB030AWgIR0CiQsdgWrOrdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAokLk2BJ7LXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKJC5IAfdRB1fZQoaAZHQH9AAAAAAABoB030AWgIR0CiQtKSX+l1dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAokMAb4rSVnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKJC9AZbY9R1fZQoaAZHQH9AAAAAAABoB030AWgIR0CiQvtVaOghdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAokM+zOX3QHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKJDNhScbzd1fZQoaAZHQH9AAAAAAABoB030AWgIR0CiQ0d07r9mdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAokNIxesxPHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKJDhGwRoRJ1fZQoaAZHQH9AAAAAAABoB030AWgIR0CiQ59Esrd4dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAokPFYr8R+XV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKJD37Lt/nZ1fZQoaAZHQH9AAAAAAABoB030AWgIR0CiRBUmdAgQdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAokQOFWXC0nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKJEK9oN/fB1fZQoaAZHQH9AAAAAAABoB030AWgIR0CiRCvIfbKzdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAokQaEWZZ0XV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKJESWgvlEJ1fZQoaAZHQH9AAAAAAABoB030AWgIR0CiRD2AG0NSdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAokRFRzijtXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKJEixcmjTN1fZQoaAZHQH9AAAAAAABoB030AWgIR0CiRINqgyuZdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAokSU1qFh5XV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKJEl1ie/Yd1fZQoaAZHQH9AAAAAAABoB030AWgIR0CiRNTuOS4fdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAokTtcMVk+XV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKJFFOLR8dB1fZQoaAZHQH9AAAAAAABoB030AWgIR0CiRS9OIqLCdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAokVj8ejmCHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKJFW2TgVGl1fZQoaAZHQH9AAAAAAABoB030AWgIR0CiRXjBl+VkdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAokV4eYD1XnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKJFZqW1MM91fZQoaAZHQH9AAAAAAABoB030AWgIR0CiRZY6wMYudX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAokWKVpsXSHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKJFkZDRc/t1fZQoaAZHQH9AAAAAAABoB030AWgIR0CiRdkKNQ0odX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAokXPCEYfn3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKJF4FGoaUB1fZQoaAZHQH9AAAAAAABoB030AWgIR0CiReGdy1eCdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAokYc2aUiZHVlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 920,
79
+ "n_steps": 2048,
80
+ "gamma": 0.99,
81
+ "gae_lambda": 0.95,
82
+ "ent_coef": 0.0,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 10,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
CartPole v1 RL model/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac40e0b44b9fc01d0fc24918711acfd3861221f16e18663b0c0f22e5b1ac2614
3
+ size 79773
CartPole v1 RL model/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7fa68cce8ec866410d96f4efe6ea040c59966ffa6cc3bb52310787ab3a9885aa
3
+ size 40641
CartPole v1 RL model/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
CartPole v1 RL model/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - CartPole-v1
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 500.00 +/- 0.00
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: CartPole-v1
20
+ type: CartPole-v1
21
+ ---
22
+
23
+ # **PPO** Agent playing **CartPole-v1**
24
+ This is a trained model of a **PPO** agent playing **CartPole-v1**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
26
+
27
+ ## Usage (with Stable-baselines3)
28
+ TODO: Add your code
29
+
30
+
31
+ ```python
32
+ from stable_baselines3 import ...
33
+ from huggingface_sb3 import load_from_hub
34
+
35
+ ...
36
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe43bf22e60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe43bf22ef0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe43bf22f80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe43bf29050>", "_build": "<function ActorCriticPolicy._build at 0x7fe43bf290e0>", "forward": "<function ActorCriticPolicy.forward at 0x7fe43bf29170>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe43bf29200>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe43bf29290>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe43bf29320>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe43bf293b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe43bf29440>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe43bf7b3f0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVmwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsEhZRoColDEJqZmcD//3//UHfWvv//f/+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSwSFlGgKiUMQmpmZQP//f39Qd9Y+//9/f5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLBIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQwQBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsEhZRoKolDBAEBAQGUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [4], "low": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]", "high": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLAowGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 2, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 3014656, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1653477767.1635447, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQEAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLBIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAQAAIrvdPEaGy76hhy+85gsGP3xPODu8Oh+8uk4uu9ETkDwlmUA7TP1HvdANNjkHF2I9IbwzvCquAD2SLsE7jrUZvT1xEjxoSZq8nLoVvJI0BD05a9Y7ECZvPlcPB7sGQ6++0wC2O49+Pb2EqYq73ludPQAnFzts+Tw6MBWNOmVDBLwZDay7GP8hvcylAjyDAYQ8RxbfO4paND7qhCY7g5KDvn2JYzrlcnm8ni6/u4Sd+TwZHQ06RLEUvAwtbTv74xQ8sjNYPEVNS75+ikq7h0+cPjac0ruD1b+6+kM9O3f85ztrD5e7zZlSPoq86DvTHpm+bTJ5PCC2Rz6rPnO7khuYvpR0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQH9AAAAAAACMAWyUTfQBjAF0lEdAohDYSBbwB3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKIQ6a9bor51fZQoaAZHQH9AAAAAAABoB030AWgIR0CiEOunEVFhdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAohEnffoA4nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKIRP8XN1Qt1fZQoaAZHQH9AAAAAAABoB030AWgIR0CiEWdzwMH9dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAohGDMTviLnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKIRuCjDbah1fZQoaAZHQH9AAAAAAABoB030AWgIR0CiEa/EwWWQdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAohHNGCqZMXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKIRzNW2gFp1fZQoaAZHQH9AAAAAAABoB030AWgIR0CiEbrpA2Q5dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAohHo6U7jk3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKIR3H9WIXV1fZQoaAZHQH9AAAAAAABoB030AWgIR0CiEeOE25xzdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAohInWtlqanV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKISHXhfjS51fZQoaAZHQH9AAAAAAABoB030AWgIR0CiEi7I1cdHdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAohIxbKRuCXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKISbvlU6xR1fZQoaAZHQH9AAAAAAABoB030AWgIR0CiEodSMtK7dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAohKu8oQWe3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKISzkGzKLd1fZQoaAZHQH9AAAAAAABoB030AWgIR0CiEwMyi22HdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAohL6kRBeHHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKITF7LMcIZ1fZQoaAZHQH9AAAAAAABoB030AWgIR0CiExdkBjnWdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAohMFbRneznV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKITMwXZXdV1fZQoaAZHQH9AAAAAAABoB030AWgIR0CiEyYr8R+SdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAohMuavzOHHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKITcc94eLh1fZQoaAZHQH9AAAAAAABoB030AWgIR0CiE2jneSB9dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAohN7efqX4XV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKITfUhmoR91fZQoaAZHQH9AAAAAAABoB030AWgIR0CiE7nMEA5rdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAokEK3VkMC3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKJBMmce8wp1fZQoaAZHQH9AAAAAAABoB030AWgIR0CiQU53LV4HdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAokGG0TlDGHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKJBftJnQIF1fZQoaAZHQH9AAAAAAABoB030AWgIR0CiQZx20Re1dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAokGcTrVvuXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKJBilLOAy51fZQoaAZHQH9AAAAAAABoB030AWgIR0CiQbwl8gIQdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAokGwGr0aqHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKJBt3Roh6l1fZQoaAZHQH9AAAAAAABoB030AWgIR0CiQftHQQcxdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAokHxnrY5DXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKJCAwQDmr91fZQoaAZHQH9AAAAAAABoB030AWgIR0CiQgTA31jBdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAokJBew9q13V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKJCWO8TSLJ1fZQoaAZHQH9AAAAAAABoB030AWgIR0CiQn6VdHDrdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAokKZSFXaJ3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKJCz6MR6GB1fZQoaAZHQH9AAAAAAABoB030AWgIR0CiQsdgWrOrdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAokLk2BJ7LXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKJC5IAfdRB1fZQoaAZHQH9AAAAAAABoB030AWgIR0CiQtKSX+l1dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAokMAb4rSVnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKJC9AZbY9R1fZQoaAZHQH9AAAAAAABoB030AWgIR0CiQvtVaOghdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAokM+zOX3QHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKJDNhScbzd1fZQoaAZHQH9AAAAAAABoB030AWgIR0CiQ0d07r9mdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAokNIxesxPHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKJDhGwRoRJ1fZQoaAZHQH9AAAAAAABoB030AWgIR0CiQ59Esrd4dX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAokPFYr8R+XV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKJD37Lt/nZ1fZQoaAZHQH9AAAAAAABoB030AWgIR0CiRBUmdAgQdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAokQOFWXC0nV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKJEK9oN/fB1fZQoaAZHQH9AAAAAAABoB030AWgIR0CiRCvIfbKzdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAokQaEWZZ0XV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKJESWgvlEJ1fZQoaAZHQH9AAAAAAABoB030AWgIR0CiRD2AG0NSdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAokRFRzijtXV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKJEixcmjTN1fZQoaAZHQH9AAAAAAABoB030AWgIR0CiRINqgyuZdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAokSU1qFh5XV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKJEl1ie/Yd1fZQoaAZHQH9AAAAAAABoB030AWgIR0CiRNTuOS4fdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAokTtcMVk+XV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKJFFOLR8dB1fZQoaAZHQH9AAAAAAABoB030AWgIR0CiRS9OIqLCdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAokVj8ejmCHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKJFW2TgVGl1fZQoaAZHQH9AAAAAAABoB030AWgIR0CiRXjBl+VkdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAokV4eYD1XnV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKJFZqW1MM91fZQoaAZHQH9AAAAAAABoB030AWgIR0CiRZY6wMYudX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAokWKVpsXSHV9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKJFkZDRc/t1fZQoaAZHQH9AAAAAAABoB030AWgIR0CiRdkKNQ0odX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAokXPCEYfn3V9lChoBkdAf0AAAAAAAGgHTfQBaAhHQKJF4FGoaUB1fZQoaAZHQH9AAAAAAABoB030AWgIR0CiReGdy1eCdX2UKGgGR0B/QAAAAAAAaAdN9AFoCEdAokYc2aUiZHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 920, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:035d6176f9ad452651cb15cab86f64fa0829a7c612bee624c9e148afe60c8941
3
+ size 52008
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 500.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-25T12:10:31.643859"}