Collections
Discover the best community collections!
Collections including paper arxiv:2406.07522
-
Instruction Pre-Training: Language Models are Supervised Multitask Learners
Paper • 2406.14491 • Published • 87 -
Transformers are SSMs: Generalized Models and Efficient Algorithms Through Structured State Space Duality
Paper • 2405.21060 • Published • 64 -
Perplexed by Perplexity: Perplexity-Based Data Pruning With Small Reference Models
Paper • 2405.20541 • Published • 22 -
MMLU-Pro: A More Robust and Challenging Multi-Task Language Understanding Benchmark
Paper • 2406.01574 • Published • 44
-
mDPO: Conditional Preference Optimization for Multimodal Large Language Models
Paper • 2406.11839 • Published • 38 -
Pandora: Towards General World Model with Natural Language Actions and Video States
Paper • 2406.09455 • Published • 15 -
WPO: Enhancing RLHF with Weighted Preference Optimization
Paper • 2406.11827 • Published • 14 -
In-Context Editing: Learning Knowledge from Self-Induced Distributions
Paper • 2406.11194 • Published • 15
-
Audio Mamba: Bidirectional State Space Model for Audio Representation Learning
Paper • 2406.03344 • Published • 19 -
Samba: Simple Hybrid State Space Models for Efficient Unlimited Context Language Modeling
Paper • 2406.07522 • Published • 38 -
VSSD: Vision Mamba with Non-Casual State Space Duality
Paper • 2407.18559 • Published • 19
-
Megalodon: Efficient LLM Pretraining and Inference with Unlimited Context Length
Paper • 2404.08801 • Published • 65 -
RecurrentGemma: Moving Past Transformers for Efficient Open Language Models
Paper • 2404.07839 • Published • 44 -
Eagle and Finch: RWKV with Matrix-Valued States and Dynamic Recurrence
Paper • 2404.05892 • Published • 33 -
Mamba: Linear-Time Sequence Modeling with Selective State Spaces
Paper • 2312.00752 • Published • 139
-
The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits
Paper • 2402.17764 • Published • 607 -
BitNet: Scaling 1-bit Transformers for Large Language Models
Paper • 2310.11453 • Published • 96 -
Mixture-of-Depths: Dynamically allocating compute in transformer-based language models
Paper • 2404.02258 • Published • 104 -
TransformerFAM: Feedback attention is working memory
Paper • 2404.09173 • Published • 44
-
MM1: Methods, Analysis & Insights from Multimodal LLM Pre-training
Paper • 2403.09611 • Published • 126 -
Evolutionary Optimization of Model Merging Recipes
Paper • 2403.13187 • Published • 51 -
MobileVLM V2: Faster and Stronger Baseline for Vision Language Model
Paper • 2402.03766 • Published • 14 -
LLM Agent Operating System
Paper • 2403.16971 • Published • 65
-
StableSSM: Alleviating the Curse of Memory in State-space Models through Stable Reparameterization
Paper • 2311.14495 • Published • 1 -
Vision Mamba: Efficient Visual Representation Learning with Bidirectional State Space Model
Paper • 2401.09417 • Published • 60 -
SegMamba: Long-range Sequential Modeling Mamba For 3D Medical Image Segmentation
Paper • 2401.13560 • Published • 1 -
Graph-Mamba: Towards Long-Range Graph Sequence Modeling with Selective State Spaces
Paper • 2402.00789 • Published • 2
-
Self-Rewarding Language Models
Paper • 2401.10020 • Published • 146 -
Orion-14B: Open-source Multilingual Large Language Models
Paper • 2401.12246 • Published • 12 -
MambaByte: Token-free Selective State Space Model
Paper • 2401.13660 • Published • 53 -
MM-LLMs: Recent Advances in MultiModal Large Language Models
Paper • 2401.13601 • Published • 45