-
MobileCLIP: Fast Image-Text Models through Multi-Modal Reinforced Training
Paper • 2311.17049 • Published • 1 -
DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model
Paper • 2405.04434 • Published • 14 -
A Study of Autoregressive Decoders for Multi-Tasking in Computer Vision
Paper • 2303.17376 • Published -
Sigmoid Loss for Language Image Pre-Training
Paper • 2303.15343 • Published • 6
Collections
Discover the best community collections!
Collections including paper arxiv:2411.10958
-
CatLIP: CLIP-level Visual Recognition Accuracy with 2.7x Faster Pre-training on Web-scale Image-Text Data
Paper • 2404.15653 • Published • 27 -
MoDE: CLIP Data Experts via Clustering
Paper • 2404.16030 • Published • 13 -
MoRA: High-Rank Updating for Parameter-Efficient Fine-Tuning
Paper • 2405.12130 • Published • 47 -
Reducing Transformer Key-Value Cache Size with Cross-Layer Attention
Paper • 2405.12981 • Published • 29
-
Megalodon: Efficient LLM Pretraining and Inference with Unlimited Context Length
Paper • 2404.08801 • Published • 65 -
RecurrentGemma: Moving Past Transformers for Efficient Open Language Models
Paper • 2404.07839 • Published • 44 -
Eagle and Finch: RWKV with Matrix-Valued States and Dynamic Recurrence
Paper • 2404.05892 • Published • 33 -
Mamba: Linear-Time Sequence Modeling with Selective State Spaces
Paper • 2312.00752 • Published • 139
-
The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits
Paper • 2402.17764 • Published • 607 -
BitNet: Scaling 1-bit Transformers for Large Language Models
Paper • 2310.11453 • Published • 96 -
Mixture-of-Depths: Dynamically allocating compute in transformer-based language models
Paper • 2404.02258 • Published • 104 -
TransformerFAM: Feedback attention is working memory
Paper • 2404.09173 • Published • 44