File size: 4,431 Bytes
8b76ef3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
---
frameworks:
- Pytorch
license: other
tasks:
- text-embedding
---
## CodeFuse-CGE-Small
<p align="center">
<img src="https://modelscope.cn/api/v1/models/codefuse-ai/CodeFuse-QWen-14B/repo?Revision=master&FilePath=LOGO.jpg&View=true" width="800"/>
<p>
## Model Description
CodeFuse-CGE-Small is the Small version of the CodeFuse-CGE family which is fine-tuned based on Phi-3.5-mini-instruct. CodeFuse-CGE-Small is distinguish on text2code task for it's powerful ability of capturing the semantic relationship between code and text.
This model has the following notable features:
● Instruction-tuning is enabled for both query and code snippet sides.
● The model obtains sentence-level and code-level representations through a layer of cross-attention computation module.
● The model has a smaller dimensional size without significant degradation in performance.
Model Configuration
Model Size: 3.8B
Embedding Dimension: 1024
Hidden Layers: 32
Max Input Tokens: 1024
Requirements
```
flash_attn==2.4.2
torch==2.1.0
accelerate==0.28.0
transformers==4.43.0
```
## How to Use
### transformers
```
from transformers import AutoTokenizer, AutoModel
model_name_or_path = "CodeFuse-CGE-Small"
model = AutoModel.from_pretrained(model_name_or_path, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True, truncation_side='right', padding_side='right')
model = model.to(torch.bfloat16)
if torch.cuda.is_available():
device = 'cuda'
else:
device = 'cpu'
model.to(device)
prefix_dict = {'python':{'query':'Retrieve the Python code that solves the following query:', 'passage':'Python code:'},
'java':{'query':'Retrieve the Java code that solves the following query:', 'passage':'Java code:'},
'go':{'query':'Retrieve the Go code that solves the following query:', 'passage':'Go code:'},
'c++':{'query':'Retrieve the C++ code that solves the following query:', 'passage':'C++ code:'},
'javascript':{'query':'Retrieve the Javascript code that solves the following query:', 'passage':'Javascript code:'},
'php':{'query':'Retrieve the PHP code that solves the following query:', 'passage':'PHP code:'},
'ruby':{'query':'Retrieve the Ruby code that solves the following query:', 'passage':'Ruby code:'},
'default':{'query':'Retrieve the code that solves the following query:', 'passage':'Code:'}
}
text = ["Writes a Boolean to the stream.",
"def writeBoolean(self, n): t = TYPE_BOOL_TRUE if n is False: t = TYPE_BOOL_FALSE self.stream.write(t)"]
text[0] += prefix_dict['python']['query']
text[0] += prefix_dict['python']['passage']
embed = model.encode(tokenizer, text)
score = embed[0] @ embed[1].T
print("score", score)
```
## Benchmark the Performance
We use MRR metric to evaluate the ability on text2code retrieval tasks: AdvTest, CosQA, CSN
![result](./result.png)
## Acknowledgement
Thanks to the authors of open-sourced datasets, including CSN, Adv, CoSQA.
## License
Since CodeFuse-CGE-Small is fine-tuned based on Phi3 model, our usage license follows the same terms as that of Phi3 model.
## 加入我们
我们是平台技术事业群AI Native团队,负责蚂蚁蚂蚁集团平台工程的智能化,团队成立3年多以来,支持了蚂蚁集团云计算基础设施智能化运维的升级改造。团队的Mission是,通过世界级的技术创新和影响,构建有广泛用户的算法服务和平台,支撑内外部产品和业务落地。团队秉承创新基因,在支撑业务落地的同时,推动技术影响。3年以来在ICLR、NeurIPS、KDD、ACL等顶会发表论文20余篇,创新业务结果获得两次蚂蚁技术最高奖T-Star,1次蚂蚁集团最高奖SuperMA。开源项目CodeFuse获得4K点赞(2024年2月),Huggingface和modelscope上模型累积下载量超过150万次。
我们正在寻找行业中的佼佼者加入我们的团队!如果您希望在一个充满活力、创新和卓越文化的环境中发展您的职业生涯,欢迎您查看我们的社招&校招机会,加入我们,一起创造下一个行业里程碑。
校招:https://hrrecommend.antgroup.com/guide.html?code=8uoP5mlus5DqQYbE_EnqcE2FD5JZH21MwvMUIb9mb6X3osXPuBraG54SyM8GLn_7
社招:https://talent.antgroup.com/off-campus-position?positionId=1933830 |