Upload 9 files
Browse files- added_tokens.json +4 -0
- main.py +102 -0
- merges.txt +0 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +73 -0
- trainer_state.json +309 -0
- vocab.json +0 -0
added_tokens.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<from>": 50265,
|
3 |
+
"<to>": 50266
|
4 |
+
}
|
main.py
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import torch.nn as nn
|
6 |
+
from huggingface_hub import PyTorchModelHubMixin
|
7 |
+
from transformers import EncoderDecoderModel, RobertaTokenizerFast, PreTrainedModel
|
8 |
+
from torch.utils.data import DataLoader, TensorDataset
|
9 |
+
|
10 |
+
class DependencyAnalyzer(nn.Module, PyTorchModelHubMixin):
|
11 |
+
def __init__(self, encoder: PreTrainedModel | None = None,
|
12 |
+
match_tokenizer: RobertaTokenizerFast | None = None):
|
13 |
+
super(DependencyAnalyzer, self).__init__()
|
14 |
+
if not encoder:
|
15 |
+
encoder: PreTrainedModel = EncoderDecoderModel.from_encoder_decoder_pretrained("microsoft/codebert-base", "microsoft/codebert-base").encoder
|
16 |
+
if match_tokenizer:
|
17 |
+
encoder.resize_token_embeddings(len(match_tokenizer))
|
18 |
+
encoder.config.decoder_start_token_id = match_tokenizer.cls_token_id
|
19 |
+
encoder.config.pad_token_id = match_tokenizer.pad_token_id
|
20 |
+
encoder.config.eos_token_id = match_tokenizer.sep_token_id
|
21 |
+
encoder.config.vocab_size = match_tokenizer.vocab_size
|
22 |
+
self.encoder = encoder
|
23 |
+
self.dense = nn.Linear(768, 2)
|
24 |
+
|
25 |
+
def forward(self, input_ids, attention_mask):
|
26 |
+
outputs = self.encoder(input_ids=input_ids, attention_mask=attention_mask)
|
27 |
+
pooler_output = outputs.pooler_output
|
28 |
+
output_2d = self.dense(pooler_output)
|
29 |
+
return output_2d
|
30 |
+
|
31 |
+
def load_model_and_tokenizer(model_dir, directly_load = True, model_with_structure_dir = None):
|
32 |
+
if directly_load:
|
33 |
+
tokenizer = RobertaTokenizerFast.from_pretrained(model_dir)
|
34 |
+
if model_with_structure_dir:
|
35 |
+
model = DependencyAnalyzer.from_pretrained(model_with_structure_dir)
|
36 |
+
else:
|
37 |
+
model = DependencyAnalyzer(match_tokenizer=tokenizer)
|
38 |
+
model.load_state_dict(torch.load(os.path.join(model_dir,'pytorch_model.bin')))
|
39 |
+
return model, tokenizer
|
40 |
+
|
41 |
+
model = EncoderDecoderModel.from_pretrained(model_dir)
|
42 |
+
if not isinstance(model, EncoderDecoderModel):
|
43 |
+
raise RuntimeError(f"Model read from {model_dir} is not valid")
|
44 |
+
model = model.encoder
|
45 |
+
if not isinstance(model, PreTrainedModel):
|
46 |
+
raise RuntimeError(f"Encoder of original model is not valid")
|
47 |
+
|
48 |
+
tokenizer: RobertaTokenizerFast = RobertaTokenizerFast.from_pretrained("microsoft/codebert-base")
|
49 |
+
if not isinstance(tokenizer, RobertaTokenizerFast):
|
50 |
+
raise RuntimeError("Cannot read tokenizer as microsoft/codebert-base")
|
51 |
+
special_tokens = ['<from>', '<to>']
|
52 |
+
# tokenizer.add_tokens(my_tokens, special_tokens = False)
|
53 |
+
tokenizer.add_tokens(special_tokens, special_tokens = True)
|
54 |
+
|
55 |
+
model = DependencyAnalyzer(model, tokenizer)
|
56 |
+
|
57 |
+
return model, tokenizer
|
58 |
+
|
59 |
+
class DependencyClassifier:
|
60 |
+
def __init__(self, load_dir, load_with_model_struture=False):
|
61 |
+
self.model, self.tokenizer = load_model_and_tokenizer(load_dir, model_with_structure_dir=load_dir) \
|
62 |
+
if load_with_model_struture \
|
63 |
+
else load_model_and_tokenizer(load_dir)
|
64 |
+
if torch.cuda.is_available():
|
65 |
+
self.model.to(torch.device('cuda:1'))
|
66 |
+
|
67 |
+
def construct_pair(self, code_1: str, code_2: str):
|
68 |
+
return '<from>' + code_1 + '<to>' + code_2
|
69 |
+
|
70 |
+
def construct_corpus_pair(self, corpus: list[tuple[str, str]]):
|
71 |
+
return [self.construct_pair(code_1, code_2) for code_1, code_2 in corpus]
|
72 |
+
|
73 |
+
def gen(self, text: str):
|
74 |
+
sigmoid = nn.Sigmoid()
|
75 |
+
token_input = self.tokenizer(text, return_tensors='pt') # ATTENTION: converted to batch here
|
76 |
+
if torch.cuda.is_available():
|
77 |
+
token_input = token_input.to(torch.device('cuda:1'))
|
78 |
+
|
79 |
+
with torch.no_grad():
|
80 |
+
outputs = self.model(
|
81 |
+
input_ids=token_input['input_ids'],
|
82 |
+
attention_mask=token_input['attention_mask']
|
83 |
+
)[0]
|
84 |
+
outputs = sigmoid(outputs).detach().cpu()
|
85 |
+
return outputs[1]
|
86 |
+
|
87 |
+
def batch_gen(self, corpus_pair: list[str]):
|
88 |
+
sigmoid = nn.Sigmoid()
|
89 |
+
device = torch.device('cuda:1') if torch.cuda.is_available() else torch.device('cpu')
|
90 |
+
token_input = self.tokenizer(corpus_pair, return_tensors='pt', padding=True, truncation=True, max_length=512)
|
91 |
+
dataset = TensorDataset(token_input["input_ids"], token_input["attention_mask"])
|
92 |
+
dataloader = DataLoader(dataset, batch_size=32, shuffle=False)
|
93 |
+
|
94 |
+
preds = []
|
95 |
+
with torch.no_grad():
|
96 |
+
for batch in dataloader:
|
97 |
+
batch_input, attention_mask = [item.to(device) for item in batch]
|
98 |
+
outputs = self.model(input_ids=batch_input, attention_mask=attention_mask)
|
99 |
+
outputs = sigmoid(outputs)[:,1]
|
100 |
+
preds.append(outputs.detach().cpu())
|
101 |
+
preds = torch.cat(preds, dim=0)
|
102 |
+
return preds.numpy()
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d1fb9be53ed3766622caeb3f01af5be70ff0d18645d20904ba0b4a63f34bb0b
|
3 |
+
size 498678894
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": true,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": true,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": true,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": true,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"0": {
|
5 |
+
"content": "<s>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": true,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"1": {
|
13 |
+
"content": "<pad>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": true,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"2": {
|
21 |
+
"content": "</s>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": true,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"3": {
|
29 |
+
"content": "<unk>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": true,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
},
|
36 |
+
"50264": {
|
37 |
+
"content": "<mask>",
|
38 |
+
"lstrip": true,
|
39 |
+
"normalized": false,
|
40 |
+
"rstrip": false,
|
41 |
+
"single_word": false,
|
42 |
+
"special": true
|
43 |
+
},
|
44 |
+
"50265": {
|
45 |
+
"content": "<from>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false,
|
50 |
+
"special": true
|
51 |
+
},
|
52 |
+
"50266": {
|
53 |
+
"content": "<to>",
|
54 |
+
"lstrip": false,
|
55 |
+
"normalized": false,
|
56 |
+
"rstrip": false,
|
57 |
+
"single_word": false,
|
58 |
+
"special": true
|
59 |
+
}
|
60 |
+
},
|
61 |
+
"bos_token": "<s>",
|
62 |
+
"clean_up_tokenization_spaces": true,
|
63 |
+
"cls_token": "<s>",
|
64 |
+
"eos_token": "</s>",
|
65 |
+
"errors": "replace",
|
66 |
+
"mask_token": "<mask>",
|
67 |
+
"model_max_length": 512,
|
68 |
+
"pad_token": "<pad>",
|
69 |
+
"sep_token": "</s>",
|
70 |
+
"tokenizer_class": "RobertaTokenizer",
|
71 |
+
"trim_offsets": true,
|
72 |
+
"unk_token": "<unk>"
|
73 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,309 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.04831862449645996,
|
3 |
+
"best_model_checkpoint": "./model/new-14/checkpoint-4410",
|
4 |
+
"epoch": 1.0,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 4410,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.02,
|
13 |
+
"learning_rate": 1.1337868480725626e-05,
|
14 |
+
"loss": 0.4789,
|
15 |
+
"step": 100
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"epoch": 0.05,
|
19 |
+
"learning_rate": 2.267573696145125e-05,
|
20 |
+
"loss": 0.2222,
|
21 |
+
"step": 200
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"epoch": 0.07,
|
25 |
+
"learning_rate": 3.401360544217687e-05,
|
26 |
+
"loss": 0.109,
|
27 |
+
"step": 300
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"epoch": 0.09,
|
31 |
+
"learning_rate": 4.53514739229025e-05,
|
32 |
+
"loss": 0.072,
|
33 |
+
"step": 400
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"epoch": 0.11,
|
37 |
+
"learning_rate": 4.964792934717747e-05,
|
38 |
+
"loss": 0.0751,
|
39 |
+
"step": 500
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.14,
|
43 |
+
"learning_rate": 4.905119942713928e-05,
|
44 |
+
"loss": 0.0525,
|
45 |
+
"step": 600
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.16,
|
49 |
+
"learning_rate": 4.8454469507101085e-05,
|
50 |
+
"loss": 0.0604,
|
51 |
+
"step": 700
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.18,
|
55 |
+
"learning_rate": 4.78577395870629e-05,
|
56 |
+
"loss": 0.0512,
|
57 |
+
"step": 800
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"epoch": 0.2,
|
61 |
+
"learning_rate": 4.726100966702471e-05,
|
62 |
+
"loss": 0.0659,
|
63 |
+
"step": 900
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"epoch": 0.23,
|
67 |
+
"learning_rate": 4.6664279746986514e-05,
|
68 |
+
"loss": 0.0771,
|
69 |
+
"step": 1000
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.25,
|
73 |
+
"learning_rate": 4.6067549826948325e-05,
|
74 |
+
"loss": 0.0599,
|
75 |
+
"step": 1100
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"epoch": 0.27,
|
79 |
+
"learning_rate": 4.547081990691014e-05,
|
80 |
+
"loss": 0.054,
|
81 |
+
"step": 1200
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"epoch": 0.29,
|
85 |
+
"learning_rate": 4.487408998687194e-05,
|
86 |
+
"loss": 0.0655,
|
87 |
+
"step": 1300
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.32,
|
91 |
+
"learning_rate": 4.4277360066833754e-05,
|
92 |
+
"loss": 0.0838,
|
93 |
+
"step": 1400
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.34,
|
97 |
+
"learning_rate": 4.3680630146795565e-05,
|
98 |
+
"loss": 0.0633,
|
99 |
+
"step": 1500
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.36,
|
103 |
+
"learning_rate": 4.308390022675737e-05,
|
104 |
+
"loss": 0.0608,
|
105 |
+
"step": 1600
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"epoch": 0.39,
|
109 |
+
"learning_rate": 4.248717030671918e-05,
|
110 |
+
"loss": 0.0577,
|
111 |
+
"step": 1700
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"epoch": 0.41,
|
115 |
+
"learning_rate": 4.1890440386680994e-05,
|
116 |
+
"loss": 0.0543,
|
117 |
+
"step": 1800
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"epoch": 0.43,
|
121 |
+
"learning_rate": 4.12937104666428e-05,
|
122 |
+
"loss": 0.0464,
|
123 |
+
"step": 1900
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"epoch": 0.45,
|
127 |
+
"learning_rate": 4.069698054660461e-05,
|
128 |
+
"loss": 0.0422,
|
129 |
+
"step": 2000
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.48,
|
133 |
+
"learning_rate": 4.0100250626566415e-05,
|
134 |
+
"loss": 0.0642,
|
135 |
+
"step": 2100
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.5,
|
139 |
+
"learning_rate": 3.950352070652823e-05,
|
140 |
+
"loss": 0.0528,
|
141 |
+
"step": 2200
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"epoch": 0.52,
|
145 |
+
"learning_rate": 3.890679078649004e-05,
|
146 |
+
"loss": 0.0511,
|
147 |
+
"step": 2300
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"epoch": 0.54,
|
151 |
+
"learning_rate": 3.831006086645185e-05,
|
152 |
+
"loss": 0.0706,
|
153 |
+
"step": 2400
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"epoch": 0.57,
|
157 |
+
"learning_rate": 3.7713330946413655e-05,
|
158 |
+
"loss": 0.0474,
|
159 |
+
"step": 2500
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 0.59,
|
163 |
+
"learning_rate": 3.711660102637547e-05,
|
164 |
+
"loss": 0.0566,
|
165 |
+
"step": 2600
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"epoch": 0.61,
|
169 |
+
"learning_rate": 3.651987110633727e-05,
|
170 |
+
"loss": 0.0557,
|
171 |
+
"step": 2700
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.63,
|
175 |
+
"learning_rate": 3.592314118629908e-05,
|
176 |
+
"loss": 0.0537,
|
177 |
+
"step": 2800
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.66,
|
181 |
+
"learning_rate": 3.532641126626089e-05,
|
182 |
+
"loss": 0.0646,
|
183 |
+
"step": 2900
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"epoch": 0.68,
|
187 |
+
"learning_rate": 3.4729681346222707e-05,
|
188 |
+
"loss": 0.07,
|
189 |
+
"step": 3000
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 0.7,
|
193 |
+
"learning_rate": 3.413295142618451e-05,
|
194 |
+
"loss": 0.0508,
|
195 |
+
"step": 3100
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"epoch": 0.73,
|
199 |
+
"learning_rate": 3.353622150614632e-05,
|
200 |
+
"loss": 0.0521,
|
201 |
+
"step": 3200
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"epoch": 0.75,
|
205 |
+
"learning_rate": 3.293949158610813e-05,
|
206 |
+
"loss": 0.0636,
|
207 |
+
"step": 3300
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"epoch": 0.77,
|
211 |
+
"learning_rate": 3.234276166606994e-05,
|
212 |
+
"loss": 0.0657,
|
213 |
+
"step": 3400
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.79,
|
217 |
+
"learning_rate": 3.1746031746031745e-05,
|
218 |
+
"loss": 0.0532,
|
219 |
+
"step": 3500
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.82,
|
223 |
+
"learning_rate": 3.1149301825993556e-05,
|
224 |
+
"loss": 0.0574,
|
225 |
+
"step": 3600
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"epoch": 0.84,
|
229 |
+
"learning_rate": 3.055257190595537e-05,
|
230 |
+
"loss": 0.0425,
|
231 |
+
"step": 3700
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"epoch": 0.86,
|
235 |
+
"learning_rate": 2.9955841985917176e-05,
|
236 |
+
"loss": 0.0545,
|
237 |
+
"step": 3800
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"epoch": 0.88,
|
241 |
+
"learning_rate": 2.9359112065878985e-05,
|
242 |
+
"loss": 0.0624,
|
243 |
+
"step": 3900
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"epoch": 0.91,
|
247 |
+
"learning_rate": 2.8762382145840793e-05,
|
248 |
+
"loss": 0.0488,
|
249 |
+
"step": 4000
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 0.93,
|
253 |
+
"learning_rate": 2.81656522258026e-05,
|
254 |
+
"loss": 0.0462,
|
255 |
+
"step": 4100
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 0.95,
|
259 |
+
"learning_rate": 2.756892230576441e-05,
|
260 |
+
"loss": 0.0531,
|
261 |
+
"step": 4200
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.98,
|
265 |
+
"learning_rate": 2.6972192385726218e-05,
|
266 |
+
"loss": 0.0476,
|
267 |
+
"step": 4300
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"epoch": 1.0,
|
271 |
+
"learning_rate": 2.6375462465688033e-05,
|
272 |
+
"loss": 0.0537,
|
273 |
+
"step": 4400
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"epoch": 1.0,
|
277 |
+
"eval_f1_1": {
|
278 |
+
"f1": 0.9362880886426593
|
279 |
+
},
|
280 |
+
"eval_f1_2": {
|
281 |
+
"f1": 0.9555555555555556
|
282 |
+
},
|
283 |
+
"eval_loss": 0.04831862449645996,
|
284 |
+
"eval_precision_1": {
|
285 |
+
"precision": 0.9548022598870056
|
286 |
+
},
|
287 |
+
"eval_precision_2": {
|
288 |
+
"precision": 0.9666424945612763
|
289 |
+
},
|
290 |
+
"eval_recall_1": {
|
291 |
+
"recall": 0.9184782608695652
|
292 |
+
},
|
293 |
+
"eval_recall_2": {
|
294 |
+
"recall": 0.9447200566973778
|
295 |
+
},
|
296 |
+
"eval_runtime": 173.0776,
|
297 |
+
"eval_samples_per_second": 58.24,
|
298 |
+
"eval_steps_per_second": 3.64,
|
299 |
+
"step": 4410
|
300 |
+
}
|
301 |
+
],
|
302 |
+
"logging_steps": 100,
|
303 |
+
"max_steps": 8820,
|
304 |
+
"num_train_epochs": 2,
|
305 |
+
"save_steps": 500,
|
306 |
+
"total_flos": 0.0,
|
307 |
+
"trial_name": null,
|
308 |
+
"trial_params": null
|
309 |
+
}
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|