File size: 4,326 Bytes
a190ec4 ad2c8d4 a190ec4 ad2c8d4 a190ec4 ad2c8d4 a190ec4 ad2c8d4 a190ec4 ad2c8d4 a190ec4 ad2c8d4 a190ec4 ad2c8d4 a190ec4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
language:
- de
- fr
- it
- multilingual
license: cc-by-nc-sa-4.0
tags:
- legal
- fairlex
pipeline_tag: fill-mask
widget:
- text: Aus seinem damaligen strafbaren Verhalten resultierte eine Forderung der Nachlassverwaltung
eines <mask>, wor�ber eine aussergerichtliche Vereinbarung �ber Fr. 500'000.
- text: ' Elle avait pour but social les <mask> dans le domaine des changes, en particulier
l''exploitation d''une plateforme internet.'
- text: Il Pretore ha accolto la petizione con sentenza 16 luglio 2015, accordando
all'attore l'importo <mask>, con interessi di mora a partire dalla notifica del
precetto esecutivo, e ha rigettato in tale misura l'opposizione interposta a quest'ultimo.
---
# FairLex: A multilingual benchmark for evaluating fairness in legal text processing
We present a benchmark suite of four datasets for evaluating the fairness of pre-trained legal language models and the techniques used to fine-tune them for downstream tasks. Our benchmarks cover four jurisdictions (European Council, USA, Swiss, and Chinese), five languages (English, German, French, Italian and Chinese) and fairness across five attributes (gender, age, nationality/region, language, and legal area). In our experiments, we evaluate pre-trained language models using several group-robust fine-tuning techniques and show that performance group disparities are vibrant in many cases, while none of these techniques guarantee fairness, nor consistently mitigate group disparities. Furthermore, we provide a quantitative and qualitative analysis of our results, highlighting open challenges in the development of robustness methods in legal NLP.
---
Ilias Chalkidis, Tommaso Passini, Sheng Zhang, Letizia Tomada, Sebastian Felix Schwemer, and Anders S�gaard. 2022. FairLex: A multilingual bench-mark for evaluating fairness in legal text processing. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics, Dublin, Ireland.
---
## Pre-training details
For the purpose of this work, we release four domain-specific BERT models with continued pre-training on the corpora of the examined datasets (ECtHR, SCOTUS, FSCS, SPC).
We train mini-sized BERT models with 6 Transformer blocks, 384 hidden units, and 12 attention heads.
We warm-start all models from the public MiniLMv2 (Wang et al., 2021) using the distilled version of RoBERTa (Liu et al., 2019).
For the English datasets (ECtHR, SCOTUS) and the one distilled from XLM-R (Conneau et al., 2021) for the rest (trilingual FSCS, and Chinese SPC).
## Models list
| Model name | Training corpora | Language |
|-----------------------------------|------------------|--------------------|
| `coastalcph/fairlex-ecthr-minlm` | ECtHR | `en` |
| `coastalcph/fairlex-scotus-minlm` | SCOTUS | `en` |
| `coastalcph/fairlex-fscs-minlm` | FSCS | [`de`, `fr`, `it`] |
| `coastalcph/fairlex-cail-minlm` | CAIL | `zh` |
## Load Pretrained Model
```python
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("coastalcph/fairlex-fscs-minlm")
model = AutoModel.from_pretrained("coastalcph/fairlex-fscs-minlm")
```
## Evaluation on downstream tasks
Consider the experiments in the article:
_Ilias Chalkidis, Tommaso Passini, Sheng Zhang, Letizia Tomada, Sebastian Felix Schwemer, and Anders S�gaard. 2022. Fairlex: A multilingual bench-mark for evaluating fairness in legal text processing. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics, Dublin, Ireland._
## Author - Publication
```
@inproceedings{chalkidis-2022-fairlex,
author={Chalkidis, Ilias and Passini, Tommaso and Zhang, Sheng and
Tomada, Letizia and Schwemer, Sebastian Felix and S�gaard, Anders},
title={FairLex: A Multilingual Benchmark for Evaluating Fairness in Legal Text Processing},
booktitle={Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics},
year={2022},
address={Dublin, Ireland}
}
```
Ilias Chalkidis on behalf of [CoAStaL NLP Group](https://coastalcph.github.io)
| Github: [@ilias.chalkidis](https://github.com/iliaschalkidis) | Twitter: [@KiddoThe2B](https://twitter.com/KiddoThe2B) | |