--- base_model: unsloth/meta-llama-3.1-8b-instruct-bnb-4bit library_name: peft license: llama3.1 tags: - trl - sft - unsloth - generated_from_trainer model-index: - name: meta-llama-Meta-Llama-3.1-8B-Instruct_SFT_E1_D30003 results: [] --- [Visualize in Weights & Biases](https://wandb.ai/nicola-er-ho/clembench-playpen-sft/runs/ojtaq980) # meta-llama-Meta-Llama-3.1-8B-Instruct_SFT_E1_D30003 This model is a fine-tuned version of [unsloth/meta-llama-3.1-8b-instruct-bnb-4bit](https://huggingface.co/unsloth/meta-llama-3.1-8b-instruct-bnb-4bit) on the None dataset. ## Model description This model was trained on Successful episodes of the top 3 model similar to [D20002](clembench-playpen/meta-llama-Meta-Llama-3.1-8B-Instruct_SFT_E1_D20002) but instead of using the whole episode as input, each episode was split into conversation pieces. e.g. ```json [ { role: 'user' content: '...' }, { role: 'assistant' content: '...' }, { role: 'user' content: '...' }, { role: 'assistant' content: '...' }, ] ``` ```json is split int: [ { role: 'user' content: '...' }, { role: 'assistant' content: '...' }, ``` and ```json [ { role: 'user' content: '...' }, { role: 'assistant' content: '...' }, { role: 'user' content: '...' }, { role: 'assistant' content: '...' }, ] ``` ## Training and evaluation data After splitting, the dataset contains about 4122 conversation bits accross all games. The Dataset ID is D30003 ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 8 - seed: 7331 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.03 - lr_scheduler_warmup_steps: 5 - num_epochs: 1 ### Training results ### Framework versions - PEFT 0.12.0 - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1