File size: 2,189 Bytes
971f9bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
license: apache-2.0
base_model: google/mt5-small
tags:
- summarization
- generated_from_trainer
datasets:
- mlsum
metrics:
- rouge
model-index:
- name: mt5-small-finetuned-mlsum
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: mlsum
type: mlsum
config: fr
split: validation
args: fr
metrics:
- name: Rouge1
type: rouge
value: 23.8523
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mt5-small-finetuned-mlsum
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the mlsum dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1938
- Rouge1: 23.8523
- Rouge2: 11.7959
- Rougel: 21.1838
- Rougelsum: 21.2463
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
| 5.6087 | 1.0 | 1005 | 2.4269 | 29.6042 | 15.5378 | 25.5964 | 25.6503 |
| 3.4099 | 2.0 | 2010 | 2.2734 | 23.8963 | 12.2351 | 21.4806 | 21.4861 |
| 3.169 | 3.0 | 3015 | 2.2310 | 26.7408 | 13.7129 | 23.7543 | 23.8443 |
| 3.0327 | 4.0 | 4020 | 2.2084 | 23.2971 | 11.5675 | 20.911 | 21.0564 |
| 2.9777 | 5.0 | 5025 | 2.1938 | 23.8523 | 11.7959 | 21.1838 | 21.2463 |
### Framework versions
- Transformers 4.34.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1
|