claudios commited on
Commit
18c9b3e
·
verified ·
1 Parent(s): ab5a888

Upload folder using huggingface_hub

Browse files
README.md CHANGED
@@ -1,19 +1,52 @@
1
  ---
2
  license: mit
3
  arxiv: 2205.12424
4
- pipeline_tag: fill-mask
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  tags:
 
6
  - defect detection
7
  - code
8
  ---
9
 
10
- # VulBERTa Pretrained
11
  ## VulBERTa: Simplified Source Code Pre-Training for Vulnerability Detection
12
 
13
  ![VulBERTa architecture](https://raw.githubusercontent.com/ICL-ml4csec/VulBERTa/main/VB.png)
14
 
15
  ## Overview
16
- This model is the unofficial HuggingFace version of "[VulBERTa](https://github.com/ICL-ml4csec/VulBERTa/tree/main)" with just the masked language modeling head for pretraining. I simplified the tokenization process by adding the cleaning (comment removal) step to the tokenizer and added the simplified tokenizer to this model repo as an AutoClass, allowing everyone to load this model without manually pulling any repos (with the caveat of `trust_remote_code`).
17
 
18
  > This paper presents presents VulBERTa, a deep learning approach to detect security vulnerabilities in source code. Our approach pre-trains a RoBERTa model with a custom tokenisation pipeline on real-world code from open-source C/C++ projects. The model learns a deep knowledge representation of the code syntax and semantics, which we leverage to train vulnerability detection classifiers. We evaluate our approach on binary and multi-class vulnerability detection tasks across several datasets (Vuldeepecker, Draper, REVEAL and muVuldeepecker) and benchmarks (CodeXGLUE and D2A). The evaluation results show that VulBERTa achieves state-of-the-art performance and outperforms existing approaches across different datasets, despite its conceptual simplicity, and limited cost in terms of size of training data and number of model parameters.
19
 
@@ -28,7 +61,10 @@ Note that due to the custom tokenizer, you must pass `trust_remote_code=True` wh
28
  Example:
29
  ```
30
  from transformers import pipeline
31
- pipe = pipeline("fill-mask", model="claudios/VulBERTa-mlm", trust_remote_code=True, return_all_scores=True)
 
 
 
32
  ```
33
 
34
  ***
 
1
  ---
2
  license: mit
3
  arxiv: 2205.12424
4
+ datasets:
5
+ - code_x_glue_cc_defect_detection
6
+ metrics:
7
+ - accuracy
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - roc_auc
12
+ model-index:
13
+ - name: VulBERTa MLP
14
+ results:
15
+ - task:
16
+ type: defect-detection
17
+ dataset:
18
+ name: codexglue-devign
19
+ type: codexglue-devign
20
+ metrics:
21
+ - name: Accuracy
22
+ type: Accuracy
23
+ value: 64.71
24
+ - name: Precision
25
+ type: Precision
26
+ value: 64.80
27
+ - name: Recall
28
+ type: Recall
29
+ value: 50.76
30
+ - name: F1
31
+ type: F1
32
+ value: 56.93
33
+ - name: ROC-AUC
34
+ type: ROC-AUC
35
+ value: 71.02
36
+ pipeline_tag: text-classification
37
  tags:
38
+ - devign
39
  - defect detection
40
  - code
41
  ---
42
 
43
+ # VulBERTa MLP Devign
44
  ## VulBERTa: Simplified Source Code Pre-Training for Vulnerability Detection
45
 
46
  ![VulBERTa architecture](https://raw.githubusercontent.com/ICL-ml4csec/VulBERTa/main/VB.png)
47
 
48
  ## Overview
49
+ This model is the unofficial HuggingFace version of "[VulBERTa](https://github.com/ICL-ml4csec/VulBERTa/tree/main)" with an MLP classification head, trained on CodeXGlue Devign (C code), by Hazim Hanif & Sergio Maffeis (Imperial College London). I simplified the tokenization process by adding the cleaning (comment removal) step to the tokenizer and added the simplified tokenizer to this model repo as an AutoClass.
50
 
51
  > This paper presents presents VulBERTa, a deep learning approach to detect security vulnerabilities in source code. Our approach pre-trains a RoBERTa model with a custom tokenisation pipeline on real-world code from open-source C/C++ projects. The model learns a deep knowledge representation of the code syntax and semantics, which we leverage to train vulnerability detection classifiers. We evaluate our approach on binary and multi-class vulnerability detection tasks across several datasets (Vuldeepecker, Draper, REVEAL and muVuldeepecker) and benchmarks (CodeXGLUE and D2A). The evaluation results show that VulBERTa achieves state-of-the-art performance and outperforms existing approaches across different datasets, despite its conceptual simplicity, and limited cost in terms of size of training data and number of model parameters.
52
 
 
61
  Example:
62
  ```
63
  from transformers import pipeline
64
+ pipe = pipeline("text-classification", model="claudios/VulBERTa-MLP-Devign", trust_remote_code=True, return_all_scores=True)
65
+ pipe("static void filter_mirror_setup(NetFilterState *nf, Error **errp)\n{\n MirrorState *s = FILTER_MIRROR(nf);\n Chardev *chr;\n chr = qemu_chr_find(s->outdev);\n if (chr == NULL) {\n error_set(errp, ERROR_CLASS_DEVICE_NOT_FOUND,\n \"Device '%s' not found\", s->outdev);\n qemu_chr_fe_init(&s->chr_out, chr, errp);")
66
+ >> [[{'label': 'LABEL_0', 'score': 0.014685827307403088},
67
+ {'label': 'LABEL_1', 'score': 0.985314130783081}]]
68
  ```
69
 
70
  ***
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "VulBERTa",
3
+ "architectures": [
4
+ "RobertaForMaskedLM"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-12,
17
+ "max_position_embeddings": 1026,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.40.1",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 50000
28
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9d0d35e89d5f4f97e647744a76852a211825e4f5e0db2d305db8fe08e219264
3
+ size 499363688
special_tokens_map.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "pad_token": "<pad>"
3
+ }
tokenization_vulberta.py ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List
2
+
3
+ from tokenizers import NormalizedString, PreTokenizedString
4
+ from tokenizers.pre_tokenizers import PreTokenizer
5
+ from transformers import PreTrainedTokenizerFast
6
+
7
+ try:
8
+ from clang import cindex
9
+ except ModuleNotFoundError as e:
10
+ raise ModuleNotFoundError(
11
+ "VulBERTa Clang tokenizer requires `libclang`. Please install it via `pip install libclang`.",
12
+ ) from e
13
+
14
+
15
+ class ClangPreTokenizer:
16
+ cidx = cindex.Index.create()
17
+
18
+ def clang_split(
19
+ self,
20
+ i: int,
21
+ normalized_string: NormalizedString,
22
+ ) -> List[NormalizedString]:
23
+ tok = []
24
+ tu = self.cidx.parse(
25
+ "tmp.c",
26
+ args=[""],
27
+ unsaved_files=[("tmp.c", str(normalized_string.original))],
28
+ options=0,
29
+ )
30
+ for t in tu.get_tokens(extent=tu.cursor.extent):
31
+ spelling = t.spelling.strip()
32
+ if spelling == "":
33
+ continue
34
+ tok.append(NormalizedString(spelling))
35
+ return tok
36
+
37
+ def pre_tokenize(self, pretok: PreTokenizedString):
38
+ pretok.split(self.clang_split)
39
+
40
+
41
+ class VulBERTaTokenizer(PreTrainedTokenizerFast):
42
+ def __init__(
43
+ self,
44
+ *args,
45
+ **kwargs,
46
+ ):
47
+ super().__init__(
48
+ *args,
49
+ **kwargs,
50
+ )
51
+ self._tokenizer.pre_tokenizer = PreTokenizer.custom(ClangPreTokenizer())
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "1": {
4
+ "content": "<pad>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ }
11
+ },
12
+ "clean_up_tokenization_spaces": true,
13
+ "max_length": 1024,
14
+ "model_max_length": 1024,
15
+ "pad_to_multiple_of": null,
16
+ "pad_token": "<pad>",
17
+ "pad_token_type_id": 0,
18
+ "padding_side": "right",
19
+ "stride": 0,
20
+ "tokenizer_class": "VulBERTaTokenizer",
21
+ "auto_map": {
22
+ "AutoTokenizer": ["tokenization_vulberta.VulBERTaTokenizer", null]
23
+ },
24
+ "truncation_side": "right",
25
+ "truncation_strategy": "longest_first"
26
+ }