--- tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers datasets: - shunk031/jsnli license: cc-by-sa-4.0 language: - ja metrics: - spearmanr library_name: sentence-transformers inference: false --- # sup-simcse-ja-large ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U fugashi[unidic-lite] sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["こんにちは、世界!", "文埋め込み最高!文埋め込み最高と叫びなさい", "極度乾燥しなさい"] model = SentenceTransformer("cl-nagoya/sup-simcse-ja-large") embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch def cls_pooling(model_output, attention_mask): return model_output[0][:,0] # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained("cl-nagoya/sup-simcse-ja-large") model = AutoModel.from_pretrained("cl-nagoya/sup-simcse-ja-large") # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, cls pooling. sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Model Summary - Fine-tuning method: Supervised SimCSE - Base model: [cl-tohoku/bert-large-japanese-v2](https://huggingface.co/cl-tohoku/bert-large-japanese-v2) - Training dataset: [JSNLI](https://nlp.ist.i.kyoto-u.ac.jp/?%E6%97%A5%E6%9C%AC%E8%AA%9ESNLI%28JSNLI%29%E3%83%87%E3%83%BC%E3%82%BF%E3%82%BB%E3%83%83%E3%83%88) - Pooling strategy: cls (with an extra MLP layer only during training) - Hidden size: 1024 - Learning rate: 5e-5 - Batch size: 512 - Temperature: 0.05 - Max sequence length: 64 - Number of training examples: 2^20 - Validation interval (steps): 2^6 - Warmup ratio: 0.1 - Dtype: BFloat16 See the [GitHub repository](https://github.com/hppRC/simple-simcse-ja) for a detailed experimental setup. ## Citing & Authors ``` @misc{ hayato-tsukagoshi-2023-simple-simcse-ja, author = {Hayato Tsukagoshi}, title = {Japanese Simple-SimCSE}, year = {2023}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/hppRC/simple-simcse-ja}} } ```