emfomy commited on
Commit
eb74580
·
1 Parent(s): db3ba34

Upload model files.

Browse files
Files changed (6) hide show
  1. README.md +47 -0
  2. config.json +178 -0
  3. pytorch_model.bin +3 -0
  4. special_tokens_map.json +1 -0
  5. tokenizer_config.json +1 -0
  6. vocab.txt +0 -0
README.md ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - zh
4
+ thumbnail: https://ckip.iis.sinica.edu.tw/files/ckip_logo.png
5
+ tags:
6
+ - pytorch
7
+ - token-classification
8
+ - bert
9
+ - zh
10
+ license: gpl-3.0
11
+ datasets:
12
+ metrics:
13
+ ---
14
+
15
+ # CKIP BERT Tiny Chinese
16
+
17
+ This project provides traditional Chinese transformers models (including ALBERT, BERT, GPT2) and NLP tools (including word segmentation, part-of-speech tagging, named entity recognition).
18
+
19
+ 這個專案提供了繁體中文的 transformers 模型(包含 ALBERT、BERT、GPT2)及自然語言處理工具(包含斷詞、詞性標記、實體辨識)。
20
+
21
+ ## Homepage
22
+
23
+ * https://github.com/ckiplab/ckip-transformers
24
+
25
+ ## Contributers
26
+
27
+ * [Mu Yang](https://muyang.pro) at [CKIP](https://ckip.iis.sinica.edu.tw) (Author & Maintainer)
28
+
29
+ ## Usage
30
+
31
+ Please use BertTokenizerFast as tokenizer instead of AutoTokenizer.
32
+
33
+ 請使用 BertTokenizerFast 而非 AutoTokenizer。
34
+
35
+ ```
36
+ from transformers import (
37
+ BertTokenizerFast,
38
+ AutoModel,
39
+ )
40
+
41
+ tokenizer = BertTokenizerFast.from_pretrained('bert-base-chinese')
42
+ model = AutoModel.from_pretrained('ckiplab/bert-tiny-chinese-ner')
43
+ ```
44
+
45
+ For full usage and more information, please refer to https://github.com/ckiplab/ckip-transformers.
46
+
47
+ 有關完整使用方法及其他資訊,請參見 https://github.com/ckiplab/ckip-transformers 。
config.json ADDED
@@ -0,0 +1,178 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "../../../model/bert-tiny-scratch-lm",
3
+ "architectures": [
4
+ "BertForTokenClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "directionality": "bidi",
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 312,
12
+ "id2label": {
13
+ "0": "O",
14
+ "1": "B-CARDINAL",
15
+ "2": "B-DATE",
16
+ "3": "B-EVENT",
17
+ "4": "B-FAC",
18
+ "5": "B-GPE",
19
+ "6": "B-LANGUAGE",
20
+ "7": "B-LAW",
21
+ "8": "B-LOC",
22
+ "9": "B-MONEY",
23
+ "10": "B-NORP",
24
+ "11": "B-ORDINAL",
25
+ "12": "B-ORG",
26
+ "13": "B-PERCENT",
27
+ "14": "B-PERSON",
28
+ "15": "B-PRODUCT",
29
+ "16": "B-QUANTITY",
30
+ "17": "B-TIME",
31
+ "18": "B-WORK_OF_ART",
32
+ "19": "I-CARDINAL",
33
+ "20": "I-DATE",
34
+ "21": "I-EVENT",
35
+ "22": "I-FAC",
36
+ "23": "I-GPE",
37
+ "24": "I-LANGUAGE",
38
+ "25": "I-LAW",
39
+ "26": "I-LOC",
40
+ "27": "I-MONEY",
41
+ "28": "I-NORP",
42
+ "29": "I-ORDINAL",
43
+ "30": "I-ORG",
44
+ "31": "I-PERCENT",
45
+ "32": "I-PERSON",
46
+ "33": "I-PRODUCT",
47
+ "34": "I-QUANTITY",
48
+ "35": "I-TIME",
49
+ "36": "I-WORK_OF_ART",
50
+ "37": "E-CARDINAL",
51
+ "38": "E-DATE",
52
+ "39": "E-EVENT",
53
+ "40": "E-FAC",
54
+ "41": "E-GPE",
55
+ "42": "E-LANGUAGE",
56
+ "43": "E-LAW",
57
+ "44": "E-LOC",
58
+ "45": "E-MONEY",
59
+ "46": "E-NORP",
60
+ "47": "E-ORDINAL",
61
+ "48": "E-ORG",
62
+ "49": "E-PERCENT",
63
+ "50": "E-PERSON",
64
+ "51": "E-PRODUCT",
65
+ "52": "E-QUANTITY",
66
+ "53": "E-TIME",
67
+ "54": "E-WORK_OF_ART",
68
+ "55": "S-CARDINAL",
69
+ "56": "S-DATE",
70
+ "57": "S-EVENT",
71
+ "58": "S-FAC",
72
+ "59": "S-GPE",
73
+ "60": "S-LANGUAGE",
74
+ "61": "S-LAW",
75
+ "62": "S-LOC",
76
+ "63": "S-MONEY",
77
+ "64": "S-NORP",
78
+ "65": "S-ORDINAL",
79
+ "66": "S-ORG",
80
+ "67": "S-PERCENT",
81
+ "68": "S-PERSON",
82
+ "69": "S-PRODUCT",
83
+ "70": "S-QUANTITY",
84
+ "71": "S-TIME",
85
+ "72": "S-WORK_OF_ART"
86
+ },
87
+ "initializer_range": 0.02,
88
+ "intermediate_size": 1248,
89
+ "label2id": {
90
+ "B-CARDINAL": 1,
91
+ "B-DATE": 2,
92
+ "B-EVENT": 3,
93
+ "B-FAC": 4,
94
+ "B-GPE": 5,
95
+ "B-LANGUAGE": 6,
96
+ "B-LAW": 7,
97
+ "B-LOC": 8,
98
+ "B-MONEY": 9,
99
+ "B-NORP": 10,
100
+ "B-ORDINAL": 11,
101
+ "B-ORG": 12,
102
+ "B-PERCENT": 13,
103
+ "B-PERSON": 14,
104
+ "B-PRODUCT": 15,
105
+ "B-QUANTITY": 16,
106
+ "B-TIME": 17,
107
+ "B-WORK_OF_ART": 18,
108
+ "E-CARDINAL": 37,
109
+ "E-DATE": 38,
110
+ "E-EVENT": 39,
111
+ "E-FAC": 40,
112
+ "E-GPE": 41,
113
+ "E-LANGUAGE": 42,
114
+ "E-LAW": 43,
115
+ "E-LOC": 44,
116
+ "E-MONEY": 45,
117
+ "E-NORP": 46,
118
+ "E-ORDINAL": 47,
119
+ "E-ORG": 48,
120
+ "E-PERCENT": 49,
121
+ "E-PERSON": 50,
122
+ "E-PRODUCT": 51,
123
+ "E-QUANTITY": 52,
124
+ "E-TIME": 53,
125
+ "E-WORK_OF_ART": 54,
126
+ "I-CARDINAL": 19,
127
+ "I-DATE": 20,
128
+ "I-EVENT": 21,
129
+ "I-FAC": 22,
130
+ "I-GPE": 23,
131
+ "I-LANGUAGE": 24,
132
+ "I-LAW": 25,
133
+ "I-LOC": 26,
134
+ "I-MONEY": 27,
135
+ "I-NORP": 28,
136
+ "I-ORDINAL": 29,
137
+ "I-ORG": 30,
138
+ "I-PERCENT": 31,
139
+ "I-PERSON": 32,
140
+ "I-PRODUCT": 33,
141
+ "I-QUANTITY": 34,
142
+ "I-TIME": 35,
143
+ "I-WORK_OF_ART": 36,
144
+ "O": 0,
145
+ "S-CARDINAL": 55,
146
+ "S-DATE": 56,
147
+ "S-EVENT": 57,
148
+ "S-FAC": 58,
149
+ "S-GPE": 59,
150
+ "S-LANGUAGE": 60,
151
+ "S-LAW": 61,
152
+ "S-LOC": 62,
153
+ "S-MONEY": 63,
154
+ "S-NORP": 64,
155
+ "S-ORDINAL": 65,
156
+ "S-ORG": 66,
157
+ "S-PERCENT": 67,
158
+ "S-PERSON": 68,
159
+ "S-PRODUCT": 69,
160
+ "S-QUANTITY": 70,
161
+ "S-TIME": 71,
162
+ "S-WORK_OF_ART": 72
163
+ },
164
+ "layer_norm_eps": 1e-12,
165
+ "max_position_embeddings": 512,
166
+ "model_type": "bert",
167
+ "num_attention_heads": 12,
168
+ "num_hidden_layers": 4,
169
+ "pad_token_id": 0,
170
+ "pooler_fc_size": 312,
171
+ "pooler_num_attention_heads": 12,
172
+ "pooler_num_fc_layers": 3,
173
+ "pooler_size_per_head": 128,
174
+ "pooler_type": "first_token_transform",
175
+ "tokenizer_class": "BertTokenizerFast",
176
+ "type_vocab_size": 2,
177
+ "vocab_size": 21128
178
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b42dfb2bf2752be7885dcbd0fbf8b2954bd07948645925df1ba569514c6f4a7e
3
+ size 45891063
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"do_lower_case": false, "do_basic_tokenize": true, "never_split": null, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512, "name_or_path": "bert-base-chinese"}
vocab.txt ADDED
The diff for this file is too large to render. See raw diff