ckandemir commited on
Commit
33c33d3
·
1 Parent(s): c20c44b

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +90 -0
README.md ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: ntu-spml/distilhubert
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - marsyas/gtzan
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: distilhubert-finetuned-gtzan
12
+ results:
13
+ - task:
14
+ name: Audio Classification
15
+ type: audio-classification
16
+ dataset:
17
+ name: GTZAN
18
+ type: marsyas/gtzan
19
+ config: all
20
+ split: train
21
+ args: all
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.88
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # distilhubert-finetuned-gtzan
32
+
33
+ This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.5878
36
+ - Accuracy: 0.88
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 5e-05
56
+ - train_batch_size: 8
57
+ - eval_batch_size: 8
58
+ - seed: 42
59
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
+ - lr_scheduler_type: linear
61
+ - lr_scheduler_warmup_ratio: 0.1
62
+ - num_epochs: 15
63
+
64
+ ### Training results
65
+
66
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
67
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
68
+ | 2.1351 | 1.0 | 113 | 1.9691 | 0.55 |
69
+ | 1.366 | 2.0 | 226 | 1.2824 | 0.71 |
70
+ | 1.1106 | 3.0 | 339 | 0.9803 | 0.72 |
71
+ | 0.9281 | 4.0 | 452 | 0.8342 | 0.73 |
72
+ | 0.625 | 5.0 | 565 | 0.6073 | 0.81 |
73
+ | 0.3546 | 6.0 | 678 | 0.6393 | 0.84 |
74
+ | 0.3526 | 7.0 | 791 | 0.5106 | 0.81 |
75
+ | 0.0914 | 8.0 | 904 | 0.3930 | 0.9 |
76
+ | 0.0563 | 9.0 | 1017 | 0.4089 | 0.88 |
77
+ | 0.0475 | 10.0 | 1130 | 0.5627 | 0.86 |
78
+ | 0.0144 | 11.0 | 1243 | 0.5824 | 0.86 |
79
+ | 0.0982 | 12.0 | 1356 | 0.5572 | 0.87 |
80
+ | 0.0082 | 13.0 | 1469 | 0.5770 | 0.88 |
81
+ | 0.0076 | 14.0 | 1582 | 0.5808 | 0.87 |
82
+ | 0.008 | 15.0 | 1695 | 0.5878 | 0.88 |
83
+
84
+
85
+ ### Framework versions
86
+
87
+ - Transformers 4.31.0
88
+ - Pytorch 2.0.1+cu118
89
+ - Datasets 2.14.0
90
+ - Tokenizers 0.13.3