arianpasquali
commited on
Commit
·
a9381f1
1
Parent(s):
c777d22
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pipeline_type: "text-classification"
|
3 |
+
|
4 |
+
widget:
|
5 |
+
- text: "this is a lovely message"
|
6 |
+
example_title: "Example 1"
|
7 |
+
multi_class: false
|
8 |
+
- text: "you are an idiot and you and your family should go back to your country"
|
9 |
+
example_title: "Example 2"
|
10 |
+
multi_class: false
|
11 |
+
|
12 |
+
|
13 |
+
language:
|
14 |
+
- en
|
15 |
+
- nl
|
16 |
+
- fr
|
17 |
+
- pt
|
18 |
+
- it
|
19 |
+
- es
|
20 |
+
- de
|
21 |
+
- da
|
22 |
+
- pl
|
23 |
+
- af
|
24 |
+
|
25 |
+
datasets:
|
26 |
+
- jigsaw_toxicity_pred
|
27 |
+
metrics:
|
28 |
+
- F1 Accuracy
|
29 |
+
---
|
30 |
+
|
31 |
+
# citizenlab/twitter-xlm-roberta-base-sentiment-finetunned
|
32 |
+
|
33 |
+
This is multilingual XLM-Roberta model sequence classifier fine tunned and based on [Cardiff NLP Group](cardiffnlp/twitter-roberta-base-sentiment) sentiment classification model.
|
34 |
+
|
35 |
+
## How to use it
|
36 |
+
|
37 |
+
```python
|
38 |
+
from transformers import pipeline
|
39 |
+
|
40 |
+
model_path = "citizenlab/twitter-xlm-roberta-base-sentiment-finetunned"
|
41 |
+
|
42 |
+
sentiment_classifier = pipeline("text-classification", model=model_path, tokenizer=model_path)
|
43 |
+
sentiment_classifier("this is a lovely message")
|
44 |
+
> [{'label': 'Positive', 'score': 0.9918450713157654}]
|
45 |
+
|
46 |
+
sentiment_classifier("you are an idiot and you and your family should go back to your country")
|
47 |
+
> [{'label': 'Negative', 'score': 0.9849833846092224}]
|
48 |
+
|
49 |
+
```
|
50 |
+
|
51 |
+
## Evaluation
|
52 |
+
|
53 |
+
```
|
54 |
+
precision recall f1-score support
|
55 |
+
|
56 |
+
Negative 0.57 0.14 0.23 28
|
57 |
+
Neutral 0.78 0.94 0.86 132
|
58 |
+
Positive 0.89 0.80 0.85 51
|
59 |
+
|
60 |
+
accuracy 0.80 211
|
61 |
+
macro avg 0.75 0.63 0.64 211
|
62 |
+
weighted avg 0.78 0.80 0.77 211
|
63 |
+
```
|
64 |
+
|