chrishalcrow commited on
Commit
851c829
·
verified ·
1 Parent(s): 67ef155

Upload folder using huggingface_hub

Browse files
Files changed (4) hide show
  1. .gitattributes +1 -0
  2. README.md +259 -0
  3. config.json +142 -0
  4. skops-4mj4y_67.skops +3 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ skops-4mj4y_67.skops filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,259 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: sklearn
3
+ tags:
4
+ - sklearn
5
+ - skops
6
+ - tabular-classification
7
+ model_format: skops
8
+ model_file: skops-4mj4y_67.skops
9
+ widget:
10
+ - structuredData:
11
+ amplitude_cutoff:
12
+ - .nan
13
+ - .nan
14
+ - .nan
15
+ amplitude_cv_median:
16
+ - .nan
17
+ - .nan
18
+ - .nan
19
+ amplitude_cv_range:
20
+ - .nan
21
+ - .nan
22
+ - .nan
23
+ amplitude_median:
24
+ - -231.14950561523438
25
+ - -32.41670227050781
26
+ - -49.5401496887207
27
+ drift_mad:
28
+ - .nan
29
+ - .nan
30
+ - .nan
31
+ drift_ptp:
32
+ - .nan
33
+ - .nan
34
+ - .nan
35
+ drift_std:
36
+ - .nan
37
+ - .nan
38
+ - .nan
39
+ firing_range:
40
+ - 1.8000000000000007
41
+ - 3.2399999999999984
42
+ - 1.4399999999999995
43
+ firing_rate:
44
+ - 14.4
45
+ - 14.6
46
+ - 13.8
47
+ isi_violations_count:
48
+ - 0.0
49
+ - 0.0
50
+ - 0.0
51
+ isi_violations_ratio:
52
+ - 0.0
53
+ - 0.0
54
+ - 0.0
55
+ num_spikes:
56
+ - 144.0
57
+ - 146.0
58
+ - 138.0
59
+ presence_ratio:
60
+ - .nan
61
+ - .nan
62
+ - .nan
63
+ rp_contamination:
64
+ - 0.0
65
+ - 0.0
66
+ - 0.0
67
+ rp_violations:
68
+ - 0.0
69
+ - 0.0
70
+ - 0.0
71
+ sd_ratio:
72
+ - 0.5912728859813103
73
+ - 1.1242492492431155
74
+ - 0.7087562828230378
75
+ sliding_rp_violation:
76
+ - 0.14
77
+ - 0.13
78
+ - 0.145
79
+ snr:
80
+ - 40.52572890814601
81
+ - 6.3489456520122625
82
+ - 9.014227884573495
83
+ sync_spike_2:
84
+ - 0.0
85
+ - 0.0
86
+ - 0.007246376811594203
87
+ sync_spike_4:
88
+ - 0.0
89
+ - 0.0
90
+ - 0.0
91
+ sync_spike_8:
92
+ - 0.0
93
+ - 0.0
94
+ - 0.0
95
+ ---
96
+
97
+ # Model description
98
+
99
+ [More Information Needed]
100
+
101
+ ## Intended uses & limitations
102
+
103
+ [More Information Needed]
104
+
105
+ ## Training Procedure
106
+
107
+ [More Information Needed]
108
+
109
+ ### Hyperparameters
110
+
111
+ <details>
112
+ <summary> Click to expand </summary>
113
+
114
+ | Hyperparameter | Value |
115
+ |--------------------------------------|----------------------------------|
116
+ | memory | |
117
+ | steps | [('imputer', SimpleImputer(strategy='median')), ('scaler', StandardScaler()), ('classifier', RandomForestClassifier(class_weight='balanced_subsample', min_samples_leaf=3,<br /> min_samples_split=3, n_estimators=103,<br /> random_state=404159593))] |
118
+ | verbose | False |
119
+ | imputer | SimpleImputer(strategy='median') |
120
+ | scaler | StandardScaler() |
121
+ | classifier | RandomForestClassifier(class_weight='balanced_subsample', min_samples_leaf=3,<br /> min_samples_split=3, n_estimators=103,<br /> random_state=404159593) |
122
+ | imputer__add_indicator | False |
123
+ | imputer__copy | True |
124
+ | imputer__fill_value | |
125
+ | imputer__keep_empty_features | False |
126
+ | imputer__missing_values | nan |
127
+ | imputer__strategy | median |
128
+ | scaler__copy | True |
129
+ | scaler__with_mean | True |
130
+ | scaler__with_std | True |
131
+ | classifier__bootstrap | True |
132
+ | classifier__ccp_alpha | 0.0 |
133
+ | classifier__class_weight | balanced_subsample |
134
+ | classifier__criterion | gini |
135
+ | classifier__max_depth | |
136
+ | classifier__max_features | sqrt |
137
+ | classifier__max_leaf_nodes | |
138
+ | classifier__max_samples | |
139
+ | classifier__min_impurity_decrease | 0.0 |
140
+ | classifier__min_samples_leaf | 3 |
141
+ | classifier__min_samples_split | 3 |
142
+ | classifier__min_weight_fraction_leaf | 0.0 |
143
+ | classifier__monotonic_cst | |
144
+ | classifier__n_estimators | 103 |
145
+ | classifier__n_jobs | |
146
+ | classifier__oob_score | False |
147
+ | classifier__random_state | 404159593 |
148
+ | classifier__verbose | 0 |
149
+ | classifier__warm_start | False |
150
+
151
+ </details>
152
+
153
+ ### Model Plot
154
+
155
+ <style>#sk-container-id-8 {/* Definition of color scheme common for light and dark mode */--sklearn-color-text: black;--sklearn-color-line: gray;/* Definition of color scheme for unfitted estimators */--sklearn-color-unfitted-level-0: #fff5e6;--sklearn-color-unfitted-level-1: #f6e4d2;--sklearn-color-unfitted-level-2: #ffe0b3;--sklearn-color-unfitted-level-3: chocolate;/* Definition of color scheme for fitted estimators */--sklearn-color-fitted-level-0: #f0f8ff;--sklearn-color-fitted-level-1: #d4ebff;--sklearn-color-fitted-level-2: #b3dbfd;--sklearn-color-fitted-level-3: cornflowerblue;/* Specific color for light theme */--sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));--sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white)));--sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));--sklearn-color-icon: #696969;@media (prefers-color-scheme: dark) {/* Redefinition of color scheme for dark theme */--sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));--sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111)));--sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));--sklearn-color-icon: #878787;}
156
+ }#sk-container-id-8 {color: var(--sklearn-color-text);
157
+ }#sk-container-id-8 pre {padding: 0;
158
+ }#sk-container-id-8 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;
159
+ }#sk-container-id-8 div.sk-dashed-wrapped {border: 1px dashed var(--sklearn-color-line);margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: var(--sklearn-color-background);
160
+ }#sk-container-id-8 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }`but bootstrap.min.css set `[hidden] { display: none !important; }`so we also need the `!important` here to be able to override thedefault hidden behavior on the sphinx rendered scikit-learn.org.See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;
161
+ }#sk-container-id-8 div.sk-text-repr-fallback {display: none;
162
+ }div.sk-parallel-item,
163
+ div.sk-serial,
164
+ div.sk-item {/* draw centered vertical line to link estimators */background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background));background-size: 2px 100%;background-repeat: no-repeat;background-position: center center;
165
+ }/* Parallel-specific style estimator block */#sk-container-id-8 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 2px solid var(--sklearn-color-text-on-default-background);flex-grow: 1;
166
+ }#sk-container-id-8 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: var(--sklearn-color-background);position: relative;
167
+ }#sk-container-id-8 div.sk-parallel-item {display: flex;flex-direction: column;
168
+ }#sk-container-id-8 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;
169
+ }#sk-container-id-8 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;
170
+ }#sk-container-id-8 div.sk-parallel-item:only-child::after {width: 0;
171
+ }/* Serial-specific style estimator block */#sk-container-id-8 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: var(--sklearn-color-background);padding-right: 1em;padding-left: 1em;
172
+ }/* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is
173
+ clickable and can be expanded/collapsed.
174
+ - Pipeline and ColumnTransformer use this feature and define the default style
175
+ - Estimators will overwrite some part of the style using the `sk-estimator` class
176
+ *//* Pipeline and ColumnTransformer style (default) */#sk-container-id-8 div.sk-toggleable {/* Default theme specific background. It is overwritten whether we have aspecific estimator or a Pipeline/ColumnTransformer */background-color: var(--sklearn-color-background);
177
+ }/* Toggleable label */
178
+ #sk-container-id-8 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.5em;box-sizing: border-box;text-align: center;
179
+ }#sk-container-id-8 label.sk-toggleable__label-arrow:before {/* Arrow on the left of the label */content: "▸";float: left;margin-right: 0.25em;color: var(--sklearn-color-icon);
180
+ }#sk-container-id-8 label.sk-toggleable__label-arrow:hover:before {color: var(--sklearn-color-text);
181
+ }/* Toggleable content - dropdown */#sk-container-id-8 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
182
+ }#sk-container-id-8 div.sk-toggleable__content.fitted {/* fitted */background-color: var(--sklearn-color-fitted-level-0);
183
+ }#sk-container-id-8 div.sk-toggleable__content pre {margin: 0.2em;border-radius: 0.25em;color: var(--sklearn-color-text);/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
184
+ }#sk-container-id-8 div.sk-toggleable__content.fitted pre {/* unfitted */background-color: var(--sklearn-color-fitted-level-0);
185
+ }#sk-container-id-8 input.sk-toggleable__control:checked~div.sk-toggleable__content {/* Expand drop-down */max-height: 200px;max-width: 100%;overflow: auto;
186
+ }#sk-container-id-8 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";
187
+ }/* Pipeline/ColumnTransformer-specific style */#sk-container-id-8 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {color: var(--sklearn-color-text);background-color: var(--sklearn-color-unfitted-level-2);
188
+ }#sk-container-id-8 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: var(--sklearn-color-fitted-level-2);
189
+ }/* Estimator-specific style *//* Colorize estimator box */
190
+ #sk-container-id-8 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {/* unfitted */background-color: var(--sklearn-color-unfitted-level-2);
191
+ }#sk-container-id-8 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {/* fitted */background-color: var(--sklearn-color-fitted-level-2);
192
+ }#sk-container-id-8 div.sk-label label.sk-toggleable__label,
193
+ #sk-container-id-8 div.sk-label label {/* The background is the default theme color */color: var(--sklearn-color-text-on-default-background);
194
+ }/* On hover, darken the color of the background */
195
+ #sk-container-id-8 div.sk-label:hover label.sk-toggleable__label {color: var(--sklearn-color-text);background-color: var(--sklearn-color-unfitted-level-2);
196
+ }/* Label box, darken color on hover, fitted */
197
+ #sk-container-id-8 div.sk-label.fitted:hover label.sk-toggleable__label.fitted {color: var(--sklearn-color-text);background-color: var(--sklearn-color-fitted-level-2);
198
+ }/* Estimator label */#sk-container-id-8 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;
199
+ }#sk-container-id-8 div.sk-label-container {text-align: center;
200
+ }/* Estimator-specific */
201
+ #sk-container-id-8 div.sk-estimator {font-family: monospace;border: 1px dotted var(--sklearn-color-border-box);border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
202
+ }#sk-container-id-8 div.sk-estimator.fitted {/* fitted */background-color: var(--sklearn-color-fitted-level-0);
203
+ }/* on hover */
204
+ #sk-container-id-8 div.sk-estimator:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-2);
205
+ }#sk-container-id-8 div.sk-estimator.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-2);
206
+ }/* Specification for estimator info (e.g. "i" and "?") *//* Common style for "i" and "?" */.sk-estimator-doc-link,
207
+ a:link.sk-estimator-doc-link,
208
+ a:visited.sk-estimator-doc-link {float: right;font-size: smaller;line-height: 1em;font-family: monospace;background-color: var(--sklearn-color-background);border-radius: 1em;height: 1em;width: 1em;text-decoration: none !important;margin-left: 1ex;/* unfitted */border: var(--sklearn-color-unfitted-level-1) 1pt solid;color: var(--sklearn-color-unfitted-level-1);
209
+ }.sk-estimator-doc-link.fitted,
210
+ a:link.sk-estimator-doc-link.fitted,
211
+ a:visited.sk-estimator-doc-link.fitted {/* fitted */border: var(--sklearn-color-fitted-level-1) 1pt solid;color: var(--sklearn-color-fitted-level-1);
212
+ }/* On hover */
213
+ div.sk-estimator:hover .sk-estimator-doc-link:hover,
214
+ .sk-estimator-doc-link:hover,
215
+ div.sk-label-container:hover .sk-estimator-doc-link:hover,
216
+ .sk-estimator-doc-link:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
217
+ }div.sk-estimator.fitted:hover .sk-estimator-doc-link.fitted:hover,
218
+ .sk-estimator-doc-link.fitted:hover,
219
+ div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,
220
+ .sk-estimator-doc-link.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
221
+ }/* Span, style for the box shown on hovering the info icon */
222
+ .sk-estimator-doc-link span {display: none;z-index: 9999;position: relative;font-weight: normal;right: .2ex;padding: .5ex;margin: .5ex;width: min-content;min-width: 20ex;max-width: 50ex;color: var(--sklearn-color-text);box-shadow: 2pt 2pt 4pt #999;/* unfitted */background: var(--sklearn-color-unfitted-level-0);border: .5pt solid var(--sklearn-color-unfitted-level-3);
223
+ }.sk-estimator-doc-link.fitted span {/* fitted */background: var(--sklearn-color-fitted-level-0);border: var(--sklearn-color-fitted-level-3);
224
+ }.sk-estimator-doc-link:hover span {display: block;
225
+ }/* "?"-specific style due to the `<a>` HTML tag */#sk-container-id-8 a.estimator_doc_link {float: right;font-size: 1rem;line-height: 1em;font-family: monospace;background-color: var(--sklearn-color-background);border-radius: 1rem;height: 1rem;width: 1rem;text-decoration: none;/* unfitted */color: var(--sklearn-color-unfitted-level-1);border: var(--sklearn-color-unfitted-level-1) 1pt solid;
226
+ }#sk-container-id-8 a.estimator_doc_link.fitted {/* fitted */border: var(--sklearn-color-fitted-level-1) 1pt solid;color: var(--sklearn-color-fitted-level-1);
227
+ }/* On hover */
228
+ #sk-container-id-8 a.estimator_doc_link:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
229
+ }#sk-container-id-8 a.estimator_doc_link.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-3);
230
+ }
231
+ </style><div id="sk-container-id-8" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;imputer&#x27;, SimpleImputer(strategy=&#x27;median&#x27;)),(&#x27;scaler&#x27;, StandardScaler()),(&#x27;classifier&#x27;,RandomForestClassifier(class_weight=&#x27;balanced_subsample&#x27;,min_samples_leaf=3, min_samples_split=3,n_estimators=103,random_state=404159593))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-26" type="checkbox" ><label for="sk-estimator-id-26" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;&nbsp;Pipeline<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.4/modules/generated/sklearn.pipeline.Pipeline.html">?<span>Documentation for Pipeline</span></a><span class="sk-estimator-doc-link fitted">i<span>Fitted</span></span></label><div class="sk-toggleable__content fitted"><pre>Pipeline(steps=[(&#x27;imputer&#x27;, SimpleImputer(strategy=&#x27;median&#x27;)),(&#x27;scaler&#x27;, StandardScaler()),(&#x27;classifier&#x27;,RandomForestClassifier(class_weight=&#x27;balanced_subsample&#x27;,min_samples_leaf=3, min_samples_split=3,n_estimators=103,random_state=404159593))])</pre></div> </div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-27" type="checkbox" ><label for="sk-estimator-id-27" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;SimpleImputer<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.4/modules/generated/sklearn.impute.SimpleImputer.html">?<span>Documentation for SimpleImputer</span></a></label><div class="sk-toggleable__content fitted"><pre>SimpleImputer(strategy=&#x27;median&#x27;)</pre></div> </div></div><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-28" type="checkbox" ><label for="sk-estimator-id-28" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;StandardScaler<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.4/modules/generated/sklearn.preprocessing.StandardScaler.html">?<span>Documentation for StandardScaler</span></a></label><div class="sk-toggleable__content fitted"><pre>StandardScaler()</pre></div> </div></div><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-29" type="checkbox" ><label for="sk-estimator-id-29" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;RandomForestClassifier<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.4/modules/generated/sklearn.ensemble.RandomForestClassifier.html">?<span>Documentation for RandomForestClassifier</span></a></label><div class="sk-toggleable__content fitted"><pre>RandomForestClassifier(class_weight=&#x27;balanced_subsample&#x27;, min_samples_leaf=3,min_samples_split=3, n_estimators=103,random_state=404159593)</pre></div> </div></div></div></div></div></div>
232
+
233
+ ## Evaluation Results
234
+
235
+ [More Information Needed]
236
+
237
+ # How to Get Started with the Model
238
+
239
+ [More Information Needed]
240
+
241
+ # Model Card Authors
242
+
243
+ This model card is written by following authors:
244
+
245
+ [More Information Needed]
246
+
247
+ # Model Card Contact
248
+
249
+ You can contact the model card authors through following channels:
250
+ [More Information Needed]
251
+
252
+ # Citation
253
+
254
+ Below you can find information related to citation.
255
+
256
+ **BibTeX:**
257
+ ```
258
+ [More Information Needed]
259
+ ```
config.json ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "sklearn": {
3
+ "columns": [
4
+ "amplitude_cutoff",
5
+ "amplitude_cv_median",
6
+ "amplitude_cv_range",
7
+ "amplitude_median",
8
+ "drift_ptp",
9
+ "drift_std",
10
+ "drift_mad",
11
+ "firing_range",
12
+ "firing_rate",
13
+ "isi_violations_ratio",
14
+ "isi_violations_count",
15
+ "num_spikes",
16
+ "presence_ratio",
17
+ "rp_contamination",
18
+ "rp_violations",
19
+ "sd_ratio",
20
+ "sliding_rp_violation",
21
+ "snr",
22
+ "sync_spike_2",
23
+ "sync_spike_4",
24
+ "sync_spike_8"
25
+ ],
26
+ "environment": [
27
+ "scikit-learn=1.4.0"
28
+ ],
29
+ "example_input": {
30
+ "amplitude_cutoff": [
31
+ NaN,
32
+ NaN,
33
+ NaN
34
+ ],
35
+ "amplitude_cv_median": [
36
+ NaN,
37
+ NaN,
38
+ NaN
39
+ ],
40
+ "amplitude_cv_range": [
41
+ NaN,
42
+ NaN,
43
+ NaN
44
+ ],
45
+ "amplitude_median": [
46
+ -231.14950561523438,
47
+ -32.41670227050781,
48
+ -49.5401496887207
49
+ ],
50
+ "drift_mad": [
51
+ NaN,
52
+ NaN,
53
+ NaN
54
+ ],
55
+ "drift_ptp": [
56
+ NaN,
57
+ NaN,
58
+ NaN
59
+ ],
60
+ "drift_std": [
61
+ NaN,
62
+ NaN,
63
+ NaN
64
+ ],
65
+ "firing_range": [
66
+ 1.8000000000000007,
67
+ 3.2399999999999984,
68
+ 1.4399999999999995
69
+ ],
70
+ "firing_rate": [
71
+ 14.4,
72
+ 14.6,
73
+ 13.8
74
+ ],
75
+ "isi_violations_count": [
76
+ 0.0,
77
+ 0.0,
78
+ 0.0
79
+ ],
80
+ "isi_violations_ratio": [
81
+ 0.0,
82
+ 0.0,
83
+ 0.0
84
+ ],
85
+ "num_spikes": [
86
+ 144.0,
87
+ 146.0,
88
+ 138.0
89
+ ],
90
+ "presence_ratio": [
91
+ NaN,
92
+ NaN,
93
+ NaN
94
+ ],
95
+ "rp_contamination": [
96
+ 0.0,
97
+ 0.0,
98
+ 0.0
99
+ ],
100
+ "rp_violations": [
101
+ 0.0,
102
+ 0.0,
103
+ 0.0
104
+ ],
105
+ "sd_ratio": [
106
+ 0.5912728859813103,
107
+ 1.1242492492431155,
108
+ 0.7087562828230378
109
+ ],
110
+ "sliding_rp_violation": [
111
+ 0.14,
112
+ 0.13,
113
+ 0.145
114
+ ],
115
+ "snr": [
116
+ 40.52572890814601,
117
+ 6.3489456520122625,
118
+ 9.014227884573495
119
+ ],
120
+ "sync_spike_2": [
121
+ 0.0,
122
+ 0.0,
123
+ 0.007246376811594203
124
+ ],
125
+ "sync_spike_4": [
126
+ 0.0,
127
+ 0.0,
128
+ 0.0
129
+ ],
130
+ "sync_spike_8": [
131
+ 0.0,
132
+ 0.0,
133
+ 0.0
134
+ ]
135
+ },
136
+ "model": {
137
+ "file": "skops-4mj4y_67.skops"
138
+ },
139
+ "model_format": "skops",
140
+ "task": "tabular-classification"
141
+ }
142
+ }
skops-4mj4y_67.skops ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c700a4800286c32b220d47049bb3775cf3beaf98c13b26d2577f803f21b66594
3
+ size 2363572