--- base_model: - TechxGenus/starcoder2-3b-instruct tags: - merge - mergekit - lazymergekit - TechxGenus/starcoder2-3b-instruct --- # tinyllama-merged-3 tinyllama-merged-3 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [TechxGenus/starcoder2-3b-instruct](https://huggingface.co/TechxGenus/starcoder2-3b-instruct) ## 🧩 Configuration ```yaml models: - model: bigcode/starcoder2-3b # no parameters necessary for base model - model: TechxGenus/starcoder2-3b-instruct # follow user intent parameters: density: - filter: mlp.down_proj.4 # specifically targets the 5th layer value: 0 # assign value of 0 for the 5th layer of down_proj - value: 1 weight: - filter: mlp.down_proj value: [0.3, 0.25, 0.25, 0.15, 0.1] - filter: mlp.gate_proj value: [0.7, 0.25, 0.5, 0.45, 0.4] - filter: mlp.up_proj value: [0.7, 0.25, 0.5, 0.45, 0.4] - filter: self_attn value: [0.7, 0.25, 0.5, 0.45, 0.4] - value: 1 # fallback for rest of tensors. tokenizer_source: union merge_method: dare_ties base_model: bigcode/starcoder2-3b parameters: normalize: true int8_mask: true dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "choprahetarth/tinyllama-merged-3" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```