--- language: - te license: apache-2.0 tags: - automatic-speech-recognition - openslr_SLR66 - generated_from_trainer - robust-speech-event - hf-asr-leaderboard datasets: - openslr - SLR66 metrics: - wer model-index: - name: xls-r-300m-te results: - task: type: automatic-speech-recognition name: Speech Recognition dataset: type: openslr name: Open SLR args: SLR66 metrics: - type: wer value: 24.695121951219512 name: Test WER - type: cer value: 4.861934182322532 name: Test CER --- # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the OPENSLR_SLR66 - NA dataset. It achieves the following results on the evaluation set: - Loss: 0.2680 - Wer: 0.3467 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 3.0304 | 4.81 | 500 | 1.5676 | 1.0554 | | 1.5263 | 9.61 | 1000 | 0.4693 | 0.8023 | | 1.5299 | 14.42 | 1500 | 0.4368 | 0.7311 | | 1.5063 | 19.23 | 2000 | 0.4360 | 0.7302 | | 1.455 | 24.04 | 2500 | 0.4213 | 0.6692 | | 1.4755 | 28.84 | 3000 | 0.4329 | 0.5943 | | 1.352 | 33.65 | 3500 | 0.4074 | 0.5765 | | 1.3122 | 38.46 | 4000 | 0.3866 | 0.5630 | | 1.2799 | 43.27 | 4500 | 0.3860 | 0.5480 | | 1.212 | 48.08 | 5000 | 0.3590 | 0.5317 | | 1.1645 | 52.88 | 5500 | 0.3283 | 0.4757 | | 1.0854 | 57.69 | 6000 | 0.3162 | 0.4687 | | 1.0292 | 62.5 | 6500 | 0.3126 | 0.4416 | | 0.9607 | 67.31 | 7000 | 0.2990 | 0.4066 | | 0.9156 | 72.12 | 7500 | 0.2870 | 0.4009 | | 0.8329 | 76.92 | 8000 | 0.2791 | 0.3909 | | 0.7979 | 81.73 | 8500 | 0.2770 | 0.3670 | | 0.7144 | 86.54 | 9000 | 0.2841 | 0.3661 | | 0.6997 | 91.35 | 9500 | 0.2721 | 0.3485 | | 0.6568 | 96.15 | 10000 | 0.2681 | 0.3437 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0