import os import argparse import csv from time import sleep import time import json import numpy as np import fitz import pandas as pd import requests from src.retrieval.html2lines import url2lines, line_correction csv.field_size_limit(100000000) MAX_RETRIES = 3 TIMEOUT = 5 # time limit for request def scrape_text_from_url(url, temp_name): response = None for attempt in range(MAX_RETRIES): try: response = requests.get(url, timeout=TIMEOUT) except requests.RequestException as e: if attempt < MAX_RETRIES - 1: sleep(3) # Wait before retrying if ( response is None or response.status_code == 503 ): # trafilatura does not handle retry with 503, often waiting 24 hours as overwritten by the html return [] if url.endswith(".pdf"): with open(f"pdf_dir/{temp_name}.pdf", "wb") as f: f.write(response.content) extracted_text = "" doc = fitz.open(f"pdf_dir/{temp_name}.pdf") for page in doc: # iterate the document pages extracted_text += page.get_text() if page.get_text() else "" return line_correction(extracted_text.split("\n")) return line_correction(url2lines(url)) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Scraping text from URL") parser.add_argument( "-i", "--tsv_input_file", type=str, help="The path of the input files containing URLs from Google search.", ) parser.add_argument( "-o", "--json_output_dir", type=str, default="output", help="The output JSON file to save the scraped data.", ) parser.add_argument( "--overwrite_out_file", action="store_true", ) args = parser.parse_args() assert ( os.path.splitext(args.tsv_input_file)[-1] == ".tsv" ), "The input should be a tsv file." os.makedirs(args.json_output_dir, exist_ok=True) total_scraped, empty, total_failed = 0, 0, 0 print(f"Processing files {args.tsv_input_file}") st = time.time() claim_id = os.path.splitext(os.path.basename(args.tsv_input_file))[0] json_output_path = os.path.join(args.json_output_dir, f"{claim_id}.json") lines_skipped = 0 if os.path.exists(json_output_path): if args.overwrite_out_file: os.remove(json_output_path) else: with open(json_output_path, "r", encoding="utf-8") as json_file: existing_data = json_file.readlines() lines_skipped = len(existing_data) print(f" Skipping {lines_skipped} lines in {json_output_path}") # Some tsv files will fail to be loaded, try different libs to to load them try: df = pd.read_csv(args.tsv_input_file, sep="\t", header=None) data = df.values print("Data loaded successfully with Pandas.") except Exception as e: print("Error loading with csv:", e) try: data = np.genfromtxt( args.tsv_input_file, delimiter="\t", dtype=None, encoding=None ) print("Data loaded successfully with NumPy.") except Exception as e: print("Error loading with NumPy:", e) try: data = [] with open(args.tsv_input_file, "r", newline="") as tsvfile: reader = csv.reader(tsvfile, delimiter="\t") for row in reader: data.append(row) print("Data loaded successfully with csv.") except Exception as e: print("Error loading with csv:", e) data = None if len(data) == lines_skipped: print(" No more lines need to be processed!") else: with open(json_output_path, "a", encoding="utf-8") as json_file: for index, row in enumerate(data): if index < lines_skipped: continue url = row[2] json_data = { "claim_id": claim_id, "type": row[1], "query": row[3], "url": url, "url2text": [], } print(f"Scraping text for url_{index}: {url}!") try: scrape_result = scrape_text_from_url(url, claim_id) json_data["url2text"] = scrape_result if len(json_data["url2text"]) > 0: total_scraped += 1 else: empty += 1 except Exception as e: total_failed += 1 json_file.write(json.dumps(json_data, ensure_ascii=False) + "\n") json_file.flush() print(f"Output for {args.tsv_input_file} saved to {json_output_path}") elapsed_time = time.time() - st elapsed_minutes = int(elapsed_time // 60) elapsed_seconds = int(elapsed_time % 60) print(f"Time elapsed: {elapsed_minutes}min {elapsed_seconds}sec") print(f"{total_scraped} scraped, {empty} empty, {total_failed} failed")