charlesdedampierre commited on
Commit
5b9506c
·
1 Parent(s): 5cf27bc

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +37 -40
README.md CHANGED
@@ -5,15 +5,47 @@ tags:
5
  - feature-extraction
6
  - sentence-similarity
7
  - transformers
8
-
 
 
 
 
9
  ---
10
 
11
- # charlesdedampierre/bunka-embedding
 
12
 
13
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
14
 
15
  <!--- Describe your model here -->
16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
  ## Usage (Sentence-Transformers)
18
 
19
  Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
@@ -54,8 +86,8 @@ def mean_pooling(model_output, attention_mask):
54
  sentences = ['This is an example sentence', 'Each sentence is converted']
55
 
56
  # Load model from HuggingFace Hub
57
- tokenizer = AutoTokenizer.from_pretrained('charlesdedampierre/bunka-embedding')
58
- model = AutoModel.from_pretrained('charlesdedampierre/bunka-embedding')
59
 
60
  # Tokenize sentences
61
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
@@ -77,43 +109,8 @@ print(sentence_embeddings)
77
 
78
  <!--- Describe how your model was evaluated -->
79
 
80
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=charlesdedampierre/bunka-embedding)
81
-
82
 
83
- ## Training
84
- The model was trained with the parameters:
85
-
86
- **DataLoader**:
87
-
88
- `torch.utils.data.dataloader.DataLoader` of length 3181 with parameters:
89
- ```
90
- {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
91
- ```
92
-
93
- **Loss**:
94
-
95
- `sentence_transformers.losses.TripletLoss.TripletLoss` with parameters:
96
- ```
97
- {'distance_metric': 'TripletDistanceMetric.EUCLIDEAN', 'triplet_margin': 5}
98
- ```
99
-
100
- Parameters of the fit()-Method:
101
- ```
102
- {
103
- "epochs": 5,
104
- "evaluation_steps": 0,
105
- "evaluator": "NoneType",
106
- "max_grad_norm": 1,
107
- "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
108
- "optimizer_params": {
109
- "lr": 2e-05
110
- },
111
- "scheduler": "WarmupLinear",
112
- "steps_per_epoch": null,
113
- "warmup_steps": 1590,
114
- "weight_decay": 0.01
115
- }
116
- ```
117
 
118
 
119
  ## Full Model Architecture
 
5
  - feature-extraction
6
  - sentence-similarity
7
  - transformers
8
+ datasets:
9
+ - embedding-data/QQP_triplets
10
+ language:
11
+ - en
12
+ license: mit
13
  ---
14
 
15
+
16
+ # charlesdedampierre/bunka-llms
17
 
18
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
19
 
20
  <!--- Describe your model here -->
21
 
22
+
23
+ # Usage in Bunkatopics
24
+
25
+ You can use this LLM in the BunkaTopics package as following:
26
+
27
+ ```
28
+ pip install bunkatopics
29
+ ```
30
+
31
+ ```python
32
+ from bunkatopics import Bunka
33
+ import random
34
+ from datasets import load_dataset
35
+
36
+ dataset = load_dataset("rguo123/trump_tweets")['train']['content']
37
+ full_docs = random.sample(dataset, 10000)
38
+
39
+ from langchain.embeddings import HuggingFaceEmbeddings
40
+
41
+ embedding_model = HuggingFaceEmbeddings(model_name="charlesdedampierre/bunka-embedding")
42
+
43
+ bunka = Bunka(model_hf=embedding_model)
44
+
45
+ bunka.fit(full_docs)
46
+ df_topics = bunka.get_topics(n_clusters = 20)
47
+ ```
48
+
49
  ## Usage (Sentence-Transformers)
50
 
51
  Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
 
86
  sentences = ['This is an example sentence', 'Each sentence is converted']
87
 
88
  # Load model from HuggingFace Hub
89
+ tokenizer = AutoTokenizer.from_pretrained('charlesdedampierre/bunka-llms')
90
+ model = AutoModel.from_pretrained('charlesdedampierre/bunka-llms')
91
 
92
  # Tokenize sentences
93
  encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
 
109
 
110
  <!--- Describe how your model was evaluated -->
111
 
112
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=charlesdedampierre/bunka-llms)
 
113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
114
 
115
 
116
  ## Full Model Architecture