File size: 4,883 Bytes
83c2b55 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import os\n",
"import gzip\n",
"import pickle\n",
"import openai\n",
"import re\n",
"import copy"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"with open('hardware.txt', 'r') as file:\n",
" hardware_txt = file.read()\n",
"\n",
"# [x.split(';') for x in hardware_txt.split('\\n')]\n",
"stuff = []\n",
"for x in hardware_txt.split('\\n'):\n",
" if len(x.split(';')) == 4:\n",
" print(\"error\")\n",
" print(x)\n",
" stuff.append(x.split(';'))\n",
"\n",
"hardware_df = pd.DataFrame(stuff, columns=['hardware_name', 'hashrate', 'efficiency'])\n",
"\n",
"\n",
"#remove rows that contain x2,x3 etc\n",
"hardware_df = hardware_df[~hardware_df['hardware_name'].str.contains(\"x[0-9]\")]\n",
"hardware_df = hardware_df[~hardware_df['hardware_name'].str.contains(\"cards\")]\n",
"\n",
"#remove text in brackets from hardware_name\n",
"hardware_df['hardware_name'] = hardware_df['hardware_name'].apply(lambda x: re.sub(r\"\\(.*\\)\",\"\", x).strip())\n",
"hardware_df['hardware_name'] = hardware_df['hardware_name'].apply(lambda x: re.sub(r\"OC\",\"\", x).strip())\n",
"hardware_df['hardware_name'] = hardware_df['hardware_name'].apply(lambda x: re.sub(r\"\\d+ *Gh/s\",\"\", x).strip())\n",
"hardware_df['hardware_name'] = hardware_df['hardware_name'].apply(lambda x: re.sub(r\"\\d+ *GH/S\",\"\", x).strip())\n",
"hardware_df['hardware_name'] = hardware_df['hardware_name'].apply(lambda x: re.sub(r\"\\d+ *GH/s\",\"\", x).strip())\n",
"\n",
"#remove duplicate hardware names\n",
"hardware_df = hardware_df.drop_duplicates(subset=['hardware_name'])\n",
"\n",
"#reset index\n",
"hardware_df = hardware_df.reset_index(drop=True)\n",
"hardware_df[\"hardware_index\"] = hardware_df.index\n",
"hardware_df.to_csv('hardware_bitcoinwiki.csv', index=False)\n",
"\n",
"# save it as a csv with columns \"index,hardware_name\"\n",
"hardware_df = hardware_df[['hardware_index', 'hardware_name']]\n",
"# hardware_df.to_csv('hardware_index.csv', index=False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"with open('hardware_new.txt', 'r') as file:\n",
" hardware_txt = file.read()\n",
"\n",
"hardware_df = pd.DataFrame([x.split(';') for x in hardware_txt.split('\\n')], columns=['hardware_name', 'date', 'speed','power','noise','hash','profit'])\n",
"\n",
"# keep only SHA-256\n",
"hardware_df = hardware_df[hardware_df['hash'] == \"SHA-256\"]\n",
"\n",
"# efficiency = speed/power\n",
"hardware_df['Mhash/J'] = hardware_df['speed'].str.replace(\"Th/s\",\"\").astype(float)/hardware_df['power'].str.replace(\"W\",\"\").astype(float) * 1000000\n",
"\n",
"#remove text in brackets from hardware_name\n",
"hardware_df['hardware_name'] = hardware_df['hardware_name'].apply(lambda x: re.sub(r\"\\(.*\\)\",\"\", x).strip())\n",
"hardware_df['hardware_name'] = hardware_df['hardware_name'].apply(lambda x: re.sub(r\"OC\",\"\", x).strip())\n",
"hardware_df['hardware_name'] = hardware_df['hardware_name'].apply(lambda x: re.sub(r\"\\d+ *Th/s\",\"\", x).strip())\n",
"\n",
"# rename date to hardware_release_date\n",
"hardware_df = hardware_df.rename(columns={\"date\": \"hardware_release_date\"})\n",
"\n",
"#reset index\n",
"hardware_df = hardware_df.reset_index(drop=True)\n",
"hardware_df[\"hardware_index\"] = hardware_df.index\n",
"hardware_df.to_csv('hardware_asicminervalue.csv', index=False)\n",
"\n",
"with_date = hardware_df[['hardware_index', 'hardware_name', 'hardware_release_date']]\n",
"with_date.to_csv('asicminervalue_with_date.csv', index=False)\n",
"\n",
"# save it as a csv with columns \"index,hardware_name\"\n",
"hardware_df = hardware_df[['hardware_index', 'hardware_name']]"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "base",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.13"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "ad2bdc8ecc057115af97d19610ffacc2b4e99fae6737bb82f5d7fb13d2f2c186"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|