File size: 3,391 Bytes
c783850
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68816dd
c783850
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
---
base_model: None
tags:
- generated_from_trainer
model-index:
- name: checkpoints-mistral-300M-FA2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# japanese-mistral-300m-base

## Overview

Welcome to my model card!   

This Model feature is ...

- Suppression of unknown word generation by using byte fallback in SentencePiece tokenizer and conversion to huggingface Tokenizers format
- Pretrained by wikipedia dataset and cc100 dataset
- Use of [Mistral 300M](https://huggingface.co/ce-lery/japanese-mistral-300m-base/blob/main/config.json)

Yukkuri shite ittene!

## How to use the model

```python
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
import torch

MODEL_NAME = "ce-lery/japanese-mistral-300m-base"
torch.set_float32_matmul_precision('high')

DEVICE = "cuda"
if torch.cuda.is_available():
    print("cuda")
    DEVICE = "cuda"
else:
    print("cpu")
    DEVICE = "cpu"

tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME,use_fast=False)
model = AutoModelForCausalLM.from_pretrained(
    MODEL_NAME,
    trust_remote_code=True,
).to(DEVICE)

# streamer = TextStreamer(tokenizer)

prompt = "大規模言語モデルとは、"

inputs = tokenizer(prompt, add_special_tokens=False,return_tensors="pt").to(model.device)
with torch.no_grad():

    outputs = model.generate(
        inputs["input_ids"],
        max_new_tokens=256,
        do_sample=True,
        early_stopping=False,
        top_p=0.95,
        top_k=50,
        temperature=0.9,
        # streamer=streamer,
        no_repeat_ngram_size=2,
        num_beams=3
    )

print(outputs.tolist()[0])
outputs_txt = tokenizer.decode(outputs[0])
print(outputs_txt)

```

## Receipe

If you want to restruct this model, you can refer [this Github repository](https://github.com/ce-lery/japanese-mistral-300m-recipe).

I wrote the receipe for struction this model. For example,

- Preprocess with sentencepiece
- Pretraining with flash attention2 and torch.compile and DeepSpeed
- Fine-tuning with databricks-dolly-15k-ja

If you find my mistake,error,...etc, please create issue.
If you create pulreqest, I'm very happy! 

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0006
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 64
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.95) and epsilon=0.0001
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1000
- num_epochs: 1
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 4.2911        | 0.12  | 5000  | 4.2914          |
| 3.9709        | 0.24  | 10000 | 3.9900          |
| 3.8229        | 0.36  | 15000 | 3.8388          |
| 3.7197        | 0.47  | 20000 | 3.7454          |
| 3.652         | 0.59  | 25000 | 3.6739          |
| 3.597         | 0.71  | 30000 | 3.6177          |
| 3.5554        | 0.83  | 35000 | 3.5770          |
| 3.536         | 0.95  | 40000 | 3.5582          |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.14.1