--- library_name: transformers language: - yo license: mit base_model: microsoft/speecht5_tts tags: - Nigeria - generated_from_trainer datasets: - ccibeekeoc42/all_tts_v2_processed_with_speaker_embeddings model-index: - name: SpeechT5 TTS Igbo Yoruba results: [] --- # SpeechT5 TTS Igbo Yoruba This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the all_tts_v2_processed_with_speaker_embeddings dataset. It achieves the following results on the evaluation set: - Loss: 0.4111 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 12 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 18000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:-----:|:---------------:| | 0.6671 | 0.0526 | 250 | 0.5571 | | 0.5767 | 0.1052 | 500 | 0.4814 | | 0.5233 | 0.1577 | 750 | 0.4562 | | 0.5045 | 0.2103 | 1000 | 0.4461 | | 0.4917 | 0.2629 | 1250 | 0.4440 | | 0.4908 | 0.3155 | 1500 | 0.4398 | | 0.4881 | 0.3680 | 1750 | 0.4346 | | 0.4855 | 0.4206 | 2000 | 0.4361 | | 0.4785 | 0.4732 | 2250 | 0.4343 | | 0.4753 | 0.5258 | 2500 | 0.4310 | | 0.4767 | 0.5783 | 2750 | 0.4309 | | 0.4707 | 0.6309 | 3000 | 0.4280 | | 0.4724 | 0.6835 | 3250 | 0.4278 | | 0.4694 | 0.7361 | 3500 | 0.4264 | | 0.4674 | 0.7886 | 3750 | 0.4259 | | 0.4659 | 0.8412 | 4000 | 0.4263 | | 0.4631 | 0.8938 | 4250 | 0.4243 | | 0.4644 | 0.9464 | 4500 | 0.4232 | | 0.4619 | 0.9989 | 4750 | 0.4221 | | 0.4662 | 1.0515 | 5000 | 0.4244 | | 0.4602 | 1.1041 | 5250 | 0.4217 | | 0.4616 | 1.1567 | 5500 | 0.4211 | | 0.461 | 1.2093 | 5750 | 0.4201 | | 0.4576 | 1.2618 | 6000 | 0.4212 | | 0.4573 | 1.3144 | 6250 | 0.4187 | | 0.4598 | 1.3670 | 6500 | 0.4186 | | 0.4551 | 1.4196 | 6750 | 0.4200 | | 0.4599 | 1.4721 | 7000 | 0.4175 | | 0.4576 | 1.5247 | 7250 | 0.4169 | | 0.4569 | 1.5773 | 7500 | 0.4180 | | 0.4539 | 1.6299 | 7750 | 0.4175 | | 0.4552 | 1.6824 | 8000 | 0.4158 | | 0.4554 | 1.7350 | 8250 | 0.4163 | | 0.451 | 1.7876 | 8500 | 0.4171 | | 0.4558 | 1.8402 | 8750 | 0.4163 | | 0.4539 | 1.8927 | 9000 | 0.4153 | | 0.4537 | 1.9453 | 9250 | 0.4160 | | 0.453 | 1.9979 | 9500 | 0.4164 | | 0.4539 | 2.0505 | 9750 | 0.4157 | | 0.4561 | 2.1030 | 10000 | 0.4143 | | 0.4513 | 2.1556 | 10250 | 0.4144 | | 0.4525 | 2.2082 | 10500 | 0.4145 | | 0.4532 | 2.2608 | 10750 | 0.4149 | | 0.4483 | 2.3134 | 11000 | 0.4140 | | 0.4496 | 2.3659 | 11250 | 0.4142 | | 0.4513 | 2.4185 | 11500 | 0.4131 | | 0.4492 | 2.4711 | 11750 | 0.4134 | | 0.4504 | 2.5237 | 12000 | 0.4130 | | 0.4484 | 2.5762 | 12250 | 0.4131 | | 0.4522 | 2.6288 | 12500 | 0.4132 | | 0.4467 | 2.6814 | 12750 | 0.4124 | | 0.4487 | 2.7340 | 13000 | 0.4125 | | 0.4462 | 2.7865 | 13250 | 0.4117 | | 0.4459 | 2.8391 | 13500 | 0.4119 | | 0.4485 | 2.8917 | 13750 | 0.4121 | | 0.4467 | 2.9443 | 14000 | 0.4121 | | 0.4495 | 2.9968 | 14250 | 0.4124 | | 0.4473 | 3.0494 | 14500 | 0.4111 | | 0.4462 | 3.1020 | 14750 | 0.4112 | | 0.445 | 3.1546 | 15000 | 0.4119 | | 0.4497 | 3.2072 | 15250 | 0.4133 | | 0.4488 | 3.2597 | 15500 | 0.4116 | | 0.4451 | 3.3123 | 15750 | 0.4115 | | 0.4473 | 3.3649 | 16000 | 0.4115 | | 0.4416 | 3.4175 | 16250 | 0.4116 | | 0.4454 | 3.4700 | 16500 | 0.4106 | | 0.4491 | 3.5226 | 16750 | 0.4112 | | 0.4502 | 3.5752 | 17000 | 0.4108 | | 0.4488 | 3.6278 | 17250 | 0.4111 | | 0.4474 | 3.6803 | 17500 | 0.4109 | | 0.4478 | 3.7329 | 17750 | 0.4110 | | 0.4468 | 3.7855 | 18000 | 0.4111 | ### Framework versions - Transformers 4.48.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0