File size: 46,316 Bytes
68a7cc0 6e4b51f 68a7cc0 f160ab4 68a7cc0 f160ab4 68a7cc0 515c1f7 68a7cc0 515c1f7 a316d2e 68a7cc0 515c1f7 68a7cc0 515c1f7 68a7cc0 a316d2e 68a7cc0 a316d2e 68a7cc0 6e4b51f 68a7cc0 7a01dba d75ef39 68a7cc0 d75ef39 68a7cc0 d75ef39 68a7cc0 6e4b51f 68a7cc0 7a01dba 68a7cc0 7a01dba 68a7cc0 6e4b51f 68a7cc0 20e5f76 68a7cc0 20e5f76 68a7cc0 20e5f76 68a7cc0 20e5f76 68a7cc0 20e5f76 68a7cc0 6e4b51f 68a7cc0 a316d2e 68a7cc0 515c1f7 68a7cc0 515c1f7 68a7cc0 515c1f7 68a7cc0 515c1f7 68a7cc0 6e4b51f 68a7cc0 515c1f7 68a7cc0 515c1f7 68a7cc0 515c1f7 68a7cc0 515c1f7 68a7cc0 6e4b51f 68a7cc0 515c1f7 68a7cc0 515c1f7 68a7cc0 515c1f7 68a7cc0 6e4b51f 68a7cc0 a316d2e 68a7cc0 6e4b51f 68a7cc0 a316d2e 68a7cc0 6e4b51f 68a7cc0 6e4b51f 68a7cc0 d75ef39 68a7cc0 6e4b51f 68a7cc0 6e4b51f 68a7cc0 d75ef39 68a7cc0 a316d2e 68a7cc0 6e4b51f 68a7cc0 7a01dba 68a7cc0 6e4b51f 68a7cc0 d75ef39 68a7cc0 6e4b51f 68a7cc0 6e4b51f 68a7cc0 d75ef39 68a7cc0 6e4b51f 68a7cc0 6e4b51f 68a7cc0 6e4b51f 68a7cc0 6e4b51f 68a7cc0 6e4b51f 68a7cc0 6e4b51f 68a7cc0 61fb6ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 |
from logging import warn
from transformers.models.camembert.modeling_camembert import *
import torch
import torch.nn as nn
from transformers.models.camembert.configuration_camembert import CamembertConfig
import sys
AUTO_MAP = {
"AutoModel": "modeling_lsg_camembert.LSGCamembertModel",
"AutoModelForCausalLM": "modeling_lsg_camembert.LSGCamembertForCausalLM",
"AutoModelForMaskedLM": "modeling_lsg_camembert.LSGCamembertForMaskedLM",
"AutoModelForMultipleChoice": "modeling_lsg_camembert.LSGCamembertForMultipleChoice",
"AutoModelForQuestionAnswering": "modeling_lsg_camembert.LSGCamembertForQuestionAnswering",
"AutoModelForSequenceClassification": "modeling_lsg_camembert.LSGCamembertForSequenceClassification",
"AutoModelForTokenClassification": "modeling_lsg_camembert.LSGCamembertForTokenClassification"
}
class LSGCamembertConfig(CamembertConfig):
"""
This class overrides :class:`~transformers.CamembertConfig`. Please check the superclass for the appropriate
documentation alongside usage examples.
"""
base_model_prefix = "lsg"
model_type = "camembert"
def __init__(
self,
adaptive=True,
base_model_prefix="lsg",
block_size=128,
lsh_num_pre_rounds=1,
mask_first_token=False,
num_global_tokens=1,
pool_with_global=True,
sparse_block_size=128,
sparsity_factor=2,
sparsity_type="norm",
**kwargs
):
"""Constructs LSGCamembertConfig."""
super().__init__(**kwargs)
self.adaptive = adaptive
self.auto_map = AUTO_MAP
self.base_model_prefix = base_model_prefix
self.block_size = block_size
self.lsh_num_pre_rounds = lsh_num_pre_rounds
self.mask_first_token = mask_first_token
self.num_global_tokens = num_global_tokens
self.pool_with_global = pool_with_global
self.sparse_block_size = sparse_block_size
self.sparsity_factor = sparsity_factor
self.sparsity_type = sparsity_type
if sparsity_type not in [None, "none", "norm", "lsh", "pooling", "stride", "block_stride", "bos_pooling"]:
logger.warning(
"[WARNING CONFIG]: sparsity_mode not in [None, 'none', 'norm', 'lsh', 'pooling', 'stride', 'block_stride', 'bos_pooling'], \
setting sparsity_type=None, computation will skip sparse attention")
self.sparsity_type = None
if self.sparsity_type in ["stride", "block_stride"]:
if self.sparsity_factor > self.num_attention_heads:
logger.warning(
"[WARNING CONFIG]: sparsity_factor > num_attention_heads is not recommended for stride/block_stride sparsity"
)
if self.num_global_tokens < 1:
logger.warning(
"[WARNING CONFIG]: num_global_tokens < 1 is not compatible, setting num_global_tokens=1"
)
self.num_global_tokens = 1
elif self.num_global_tokens > 512:
logger.warning(
"[WARNING CONFIG]: num_global_tokens > 512 is not allowed, setting num_global_tokens=512"
)
self.num_global_tokens = 512
if self.sparsity_factor > 0:
assert self.block_size % self.sparsity_factor == 0, "[ERROR CONFIG]: block_size must be divisible by sparsity_factor"
assert self.block_size//self.sparsity_factor >= 1, "[ERROR CONFIG]: make sure block_size >= sparsity_factor"
if self.mask_first_token and not pool_with_global:
logger.warning(
"[WARNING CONFIG]: pool_with_global==False is not compatible with mask_first_token==True. Setting pool_with_global to True.")
self.pool_with_global = True
if hasattr(self, "position_embedding_type"):
if self.position_embedding_type != "absolute":
logger.warning(
"[WARNING CONFIG]: LSG Attention is not compatible with relative positional embedding and will skip its computation. Set position_embedding_type='absolute' to remove this warning.")
class BaseSelfAttention(nn.Module):
def init_modules(self, config):
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(
config, "embedding_size"
):
raise ValueError(
"The hidden size (%d) is not a multiple of the number of attention "
"heads (%d)" % (config.hidden_size, config.num_attention_heads)
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (
self.num_attention_heads,
self.attention_head_size,
)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def reshape_output(self, context_layer):
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
return context_layer.view(*new_context_layer_shape)
def project_QKV(self, hidden_states):
query_layer = self.transpose_for_scores(self.query(hidden_states))
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
return query_layer, key_layer, value_layer
class BaseAttentionProduct(nn.Module):
def __init__(self, config):
"""
Compute attention: softmax(Q @ K.T) @ V
"""
super().__init__()
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def forward(self, query_layer, key_layer, value_layer, attention_mask=None):
d = query_layer.shape[-1]
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = query_layer @ key_layer.transpose(-1, -2) / math.sqrt(d)
del query_layer
del key_layer
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in CamembertModel forward() function)
attention_scores = attention_scores + attention_mask
del attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.Softmax(dim=-1)(attention_scores)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
context_layer = self.dropout(attention_probs) @ value_layer
return context_layer
class CausalAttentionProduct(nn.Module):
def __init__(self, config):
"""
Compute attention: softmax(Q @ K.T) @ V
"""
super().__init__()
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.block_size = config.block_size
def forward(self, query_layer, key_layer, value_layer, attention_mask=None, causal_shape=None):
d = query_layer.shape[-1]
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = query_layer @ key_layer.transpose(-1, -2) / math.sqrt(d)
del query_layer
del key_layer
if attention_mask is not None:
# Add causal mask
causal_shape = (self.block_size, self.block_size) if causal_shape is None else causal_shape
causal_mask = torch.tril(
torch.ones(*causal_shape, device=attention_mask.device, dtype=attention_scores.dtype),
diagonal=-1
)
# Min value
dtype_min = torch.tensor(
torch.finfo(attention_scores.dtype).min, device=attention_scores.device, dtype=attention_scores.dtype
)
# Build causal + attention_mask
causal_mask = torch.nn.functional.pad(causal_mask.T * dtype_min, (attention_mask.size()[-1] - self.block_size, 0), value=0)
attention_mask = torch.max(attention_mask + causal_mask.unsqueeze(0).unsqueeze(0).unsqueeze(0), dtype_min)
attention_scores = attention_scores + attention_mask
del attention_mask
del causal_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.Softmax(dim=-1)(attention_scores)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
context_layer = self.dropout(attention_probs) @ value_layer
return context_layer
class LSGAttentionProduct(nn.Module):
def __init__(self, config, block_size=None, sparse_block_size=None, sparsity_factor=4, is_causal=False):
"""
Compute block or overlapping blocks attention products
"""
super().__init__()
self.block_size = block_size
self.sparse_block_size = sparse_block_size
self.sparsity_factor = sparsity_factor
self.is_causal = is_causal
if self.block_size is None:
self.block_size = config.block_size
if self.sparse_block_size is None:
self.sparse_block_size = config.sparse_block_size
# Shape of blocks
self.local_shapes = (self.block_size*3, self.block_size)
if self.sparse_block_size and self.sparsity_factor > 0:
self.sparse_shapes = (self.sparse_block_size*3, self.block_size//self.sparsity_factor)
if is_causal:
self.attention = CausalAttentionProduct(config)
else:
self.attention = BaseAttentionProduct(config)
def build_lsg_inputs(self, hidden_states, sparse_hidden_states, global_hidden_states, is_attn_mask=False):
# Build local tokens
local_hidden_states = self.reshape_to_local_block(hidden_states, is_attn_mask)
del hidden_states
# Build sparse tokens
if sparse_hidden_states is not None:
sparse_hidden_states = self.reshape_to_sparse_block(sparse_hidden_states, is_attn_mask)
return self.cat_global_sparse_local_tokens(global_hidden_states, sparse_hidden_states, local_hidden_states)
def forward(
self,
query_layer,
key_layer,
value_layer,
attention_mask=None,
sparse_key=None,
sparse_value=None,
sparse_mask=None,
global_key=None,
global_value=None,
global_mask=None
):
# Input batch, heads, length, hidden_size
n, h, t, d = query_layer.size()
n_blocks = t // self.block_size
assert t % self.block_size == 0
key_layer = self.build_lsg_inputs(
key_layer,
sparse_key,
global_key
)
del sparse_key
del global_key
value_layer = self.build_lsg_inputs(
value_layer,
sparse_value,
global_value
)
del sparse_value
del global_value
attention_mask = self.build_lsg_inputs(
attention_mask,
sparse_mask,
global_mask.transpose(-1, -2),
is_attn_mask=True
).transpose(-1, -2)
del sparse_mask
del global_mask
# expect (..., t, d) shape
# Compute attention
context_layer = self.attention(
query_layer=self.chunk(query_layer, n_blocks),
key_layer=key_layer,
value_layer=value_layer,
attention_mask=attention_mask
)
return context_layer.reshape(n, h, -1, d)
def reshape_to_local_block(self, hidden_states, is_attn_mask=False):
size, step = self.local_shapes
s = (size - step) // 2
# Pad before block reshaping
if is_attn_mask:
pad_value = torch.finfo(hidden_states.dtype).min
hidden_states = hidden_states.transpose(-1, -2)
else:
pad_value = 0
hidden_states = torch.nn.functional.pad(
hidden_states.transpose(-1, -2),
pad=(s, s),
value=pad_value
).transpose(-1, -2)
# Make blocks
hidden_states = hidden_states.unfold(-2, size=size, step=step).transpose(-1, -2)
# Skip third block if causal
if self.is_causal:
return hidden_states[..., :size*2//3, :]
return hidden_states
def reshape_to_sparse_block(self, hidden_states, is_attn_mask=False):
size, step = self.sparse_shapes
# In case of odd case
odd_offset = (step % 2)
# n, h, t, d*2 + 1
size = size*2
s = (size - step) // 2 + odd_offset
# Pad before block reshaping
if is_attn_mask:
pad_value = torch.finfo(hidden_states.dtype).min
hidden_states = hidden_states.transpose(-1, -2)
else:
pad_value = 0
hidden_states = torch.nn.functional.pad(
hidden_states.transpose(-1, -2),
pad=(s, s),
value=pad_value
).transpose(-1, -2)
# Make blocks
hidden_states = hidden_states.unfold(-2, size=size, step=step).transpose(-1, -2)
# Fix case where block_size == sparsify_factor
if odd_offset:
hidden_states = hidden_states[..., :-1, :, :]
# Indexes for selection
u = (size - self.block_size * 3 // self.sparsity_factor) // 2 + odd_offset
s = self.sparse_block_size
# Skip right block if causal
if self.is_causal:
return hidden_states[..., u-s:u, :]
u_ = u + odd_offset
return torch.cat([hidden_states[..., u-s:u, :], hidden_states[..., -u_:-u_+s, :]], dim=-2)
def cat_global_sparse_local_tokens(self, x_global, x_sparse=None, x_local=None, dim=-2):
n, h, b, t, d = x_local.size()
x_global = x_global.unsqueeze(-3).expand(-1, -1, b, -1, -1)
if x_sparse is not None:
return torch.cat([x_global, x_sparse, x_local], dim=dim)
return torch.cat([x_global, x_local], dim=dim)
def chunk(self, x, n_blocks):
t, d = x.size()[-2:]
return x.reshape(*x.size()[:-2], n_blocks, -1, d)
class LSGCamembertEmbeddings(CamembertEmbeddings):
def __init__(self, config):
super().__init__(config)
self.num_global_tokens = config.num_global_tokens
# Hardcoded but partially trained
self.global_embeddings = nn.Embedding(512, embedding_dim=config.hidden_size, )
self.block_size = config.block_size
def forward(
self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
):
if position_ids is None:
if input_ids is not None:
# Create the position ids from the input token ids. Any padded tokens remain padded.
position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length)
else:
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
# issue #5664
if token_type_ids is None:
if hasattr(self, "token_type_ids"):
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids[:, :seq_length])
embeddings = inputs_embeds + token_type_embeddings
if self.position_embedding_type == "absolute":
position_embeddings = self.position_embeddings(position_ids[:, :seq_length])
embeddings += position_embeddings
#if self.num_global_tokens < 0:
n, t, d = embeddings.size()
# Add global_tokens
indexes = torch.arange(self.num_global_tokens, device=embeddings.device).reshape(1, -1)
global_embeddings = self.global_embeddings(indexes)
embeddings = torch.cat([global_embeddings.expand(n, -1, d), embeddings], dim=-2)
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class LSGAttention(CamembertAttention):
def __init__(self, config):
super().__init__(config)
self.self = LSGSelfAttention(config)
class LSGSelfAttention(BaseSelfAttention):
'''
Compute local attention with overlapping blocs
Use global attention for tokens with highest norm
'''
def __init__(self, config):
super().__init__()
self.init_modules(config)
self.block_size = config.block_size
self.sparse_block_size = config.sparse_block_size
self.num_global_tokens = config.num_global_tokens
self.sparsity_factor = config.sparsity_factor
self.is_causal = config.is_decoder
self.is_decoder = config.is_decoder
self.attention = LSGAttentionProduct(
config,
block_size=config.block_size,
sparse_block_size=config.sparse_block_size,
sparsity_factor=self.sparsity_factor,
is_causal=self.is_causal
)
if self.is_causal:
self.causal_attention = CausalAttentionProduct(config)
self.full_attention = BaseAttentionProduct(config)
sparse_functions = {
"norm": self.get_sparse_tokens_with_norm,
"pooling": self.get_sparse_tokens_with_pooling,
"lsh": self.get_sparse_tokens_with_lsh,
"stride": self.get_sparse_tokens_with_stride,
"block_stride": self.get_sparse_tokens_with_block_stride,
"bos_pooling": self.get_sparse_tokens_with_bos_pooling
}
self.sparsity_type = config.sparsity_type
self.get_sparse_elements = sparse_functions.get(self.sparsity_type, lambda w, x, y, z: (None, None, None))
if config.sparsity_type == "lsh":
self.lsh_num_pre_rounds = config.lsh_num_pre_rounds
def get_sparse_tokens_with_norm(self, queries, keys, values, mask):
if self.sparsity_factor == 1:
return keys, values, mask.expand(-1, keys.size()[1], -1, -1)
with torch.no_grad():
block_size = min(self.block_size, self.sparse_block_size)
key_norm = keys.detach().norm(dim=-1, keepdim=True)
key_norm = key_norm * ~mask.transpose(-1, -2).bool()
key_norm = self.chunk(key_norm, block_size)
n, h, b, t, d = key_norm.size()
idx = key_norm.argsort(dim=-2)
del key_norm
idx += (torch.arange(b, device=keys.device)*t).reshape(1, 1, b, 1, 1)
split = (t - block_size // self.sparsity_factor, block_size // self.sparsity_factor)
sparse_idx = idx.split(split, -2)[-1].reshape(n, h, -1, 1)
d = keys.size()[-1]
keys = keys.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d))
values = values.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d))
mask = mask.expand(-1, h, -1, -1).transpose(-1, -2).gather(dim=-2, index=sparse_idx).transpose(-1, -2)
return keys, values, mask
def get_sparse_tokens_with_pooling(self, queries, keys, values, mask):
if self.sparsity_factor == 1:
return keys, values, mask.expand(-1, keys.size()[1], -1, -1)
keys = self.chunk(keys, self.sparsity_factor)
values = self.chunk(values, self.sparsity_factor)
n, h, b, t, d = keys.size()
mask = mask.reshape(n, 1, b, 1, t)
mask = ~mask.transpose(-1, -2).bool()
keys = keys * mask
values = values * mask
mask = mask.sum(dim=-2)
keys = keys.sum(dim=-2) / (mask + 1e-6)
values = values.sum(dim=-2) / (mask + 1e-6)
mask = (1. - mask.clamp(0, 1))
mask *= torch.finfo(mask.dtype).min
return keys.reshape(n, h, -1, d), values.reshape(n, h, -1, d), mask.expand(-1, h, -1, -1).transpose(-1, -2)
def get_sparse_tokens_with_stride(self, queries, keys, values, mask):
if self.sparsity_factor == 1:
return keys, values, mask.expand(-1, keys.size()[1], -1, -1)
n, h, t, d = keys.size()
sparse_idx = torch.arange(t // self.sparsity_factor, device=keys.device) * self.sparsity_factor
sparse_idx = sparse_idx.reshape(1, 1, -1, 1) + (torch.arange(h, device=keys.device) % self.sparsity_factor).reshape(1, h, 1, 1)
sparse_idx = sparse_idx.expand(n, h, -1, 1)
keys = keys.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d))
values = values.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d))
mask = mask.expand(-1, h, -1, -1).transpose(-1, -2).gather(dim=-2, index=sparse_idx).transpose(-1, -2)
return keys, values, mask
def get_sparse_tokens_with_block_stride(self, queries, keys, values, mask):
if self.sparsity_factor == 1:
return keys, values, mask.expand(-1, keys.size()[1], -1, -1)
n, h, t, d = keys.size()
t, b = self.block_size, t // self.block_size
sparse_idx = torch.arange(t // self.sparsity_factor, device=keys.device)
sparse_idx = sparse_idx.reshape(1, 1, 1, -1, 1) + torch.arange(h, device=keys.device).reshape(1, h, 1, 1, 1) * (t // self.sparsity_factor)
sparse_idx = (sparse_idx % t)
sparse_idx = sparse_idx + torch.arange(b, device=keys.device).reshape(1, 1, -1, 1, 1) * t
sparse_idx = sparse_idx.reshape(1, h, -1, 1).expand(n, h, -1, 1)
keys = keys.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d))
values = values.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d))
mask = mask.expand(-1, h, -1, -1).transpose(-1, -2).gather(dim=-2, index=sparse_idx).transpose(-1, -2)
return keys, values, mask
def get_sparse_tokens_with_lsh(self, queries, keys, values, mask):
if self.sparsity_factor == 1:
return keys, values, mask.expand(-1, keys.size()[1], -1, -1)
if self.sparsity_factor == self.sparse_block_size:
return self.get_sparse_tokens_with_bos_pooling(queries, keys, values, mask)
block_size = min(self.block_size, self.sparse_block_size)
keys = self.chunk(keys, block_size)
values = self.chunk(values, block_size)
n, h, b, t, d = keys.size()
mask = mask.reshape(n, 1, b, 1, t)
mask = ~mask.transpose(-1, -2).bool()
keys = keys * mask
values = values * mask
mask = mask.expand(-1, h, -1, -1, -1).float()
extra_factor = 1
for _ in range(self.lsh_num_pre_rounds):
keys, values, mask = self.lsh_round(keys, values, mask, t*extra_factor)
keys, values, mask = self.lsh_round(keys, values, mask, t//self.sparsity_factor)
keys /= mask + 1e-8
values /= mask + 1e-8
mask = (1. - mask.clamp(0, 1))
mask *= torch.finfo(mask.dtype).min
return keys.reshape(n, h, -1, d), values.reshape(n, h, -1, d), mask.transpose(-1, -2).reshape(n, h, 1, -1)
def lsh_round(self, keys, values, mask, output_size):
with torch.no_grad():
n_hashes = output_size // 2
n, h, b, t, d = keys.size()
binary_mask = mask.clamp(0, 1)
indexes = (torch.nn.functional.normalize(keys, dim=-1) * binary_mask) @ torch.randn(1, h, 1, d, n_hashes, device=keys.device)
indexes = torch.cat([indexes, -indexes], dim=-1).argmax(dim=-1, keepdim=True)
n, h, b, t, d = keys.size()
x_ = torch.zeros(n, h, b, output_size, d, device=keys.device)
mask_ = torch.zeros(n, h, b, output_size, 1, device=keys.device)
keys = torch.scatter_add(x_, dim=-2, index=indexes.expand(-1, -1, -1, -1, d), src=keys)
values = torch.scatter_add(x_, dim=-2, index=indexes.expand(-1, -1, -1, -1, d), src=values)
mask = torch.scatter_add(mask_, dim=-2, index=indexes, src=mask)
return keys[..., :output_size, :], values[..., :output_size, :], mask[..., :output_size, :]
def get_sparse_tokens_with_bos_pooling(self, queries, keys, values, mask):
if self.sparsity_factor == 1:
return keys, values, mask.expand(-1, keys.size()[1], -1, -1)
queries = queries.unsqueeze(-3)
mask = self.chunk(mask.transpose(-1, -2), self.sparsity_factor).transpose(-1, -2)
keys = self.chunk(keys, self.sparsity_factor)
values = self.chunk(values, self.sparsity_factor)
n, h, b, t, d = keys.size()
scores = (queries[..., :1, :] @ keys.transpose(-1, -2)) / math.sqrt(d)
if mask is not None:
scores = scores + mask
scores = torch.softmax(scores, dim=-1)
keys = scores @ keys
values = scores @ values
mask = mask.mean(dim=-1)
mask[mask != torch.finfo(mask.dtype).min] = 0
return keys.reshape(n, h, -1, d), values.reshape(n, h, -1, d), mask.expand(-1, h, -1, -1).transpose(-1, -2)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_value=None,
output_attentions=False,
):
query_layer = self.query(hidden_states)
# If this is instantiated as a cross-attention module, the keys
# and values come from an encoder; the attention mask needs to be
# such that the encoder's padding tokens are not attended to.
is_cross_attention = encoder_hidden_states is not None
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_layer = past_key_value[0]
value_layer = past_key_value[1]
attention_mask = encoder_attention_mask
elif is_cross_attention:
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
attention_mask = encoder_attention_mask
elif past_key_value is not None:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
else:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(query_layer)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_layer, value_layer)
if is_cross_attention:
outputs = self.cross_attention_forward(
query_layer=query_layer,
key_layer=key_layer,
value_layer=value_layer,
attention_mask=attention_mask,
output_attentions=output_attentions
)
else:
outputs = self.causal_forward(
query_layer,
key_layer,
value_layer,
attention_mask=attention_mask,
output_attentions=output_attentions,
)
outputs = outputs + ((key_layer, value_layer),)
else:
outputs = self.not_causal_forward(
query_layer,
key_layer,
value_layer,
attention_mask=attention_mask,
output_attentions=output_attentions
)
#if head_mask is not None:
# outputs = (outputs[0] * head_mask[:, :, :1, :1], ) + outputs[1:]
return outputs
def causal_forward(
self,
query_layer,
key_layer,
value_layer,
attention_mask=None,
output_attentions=False,
):
n, h, t, d = key_layer.size()
# Cat global mask
attention_mask = torch.nn.functional.pad(attention_mask, (self.num_global_tokens, 0), value=0)
# Split input into global tokens and other tokens
split = (self.num_global_tokens, t - self.num_global_tokens)
global_query, query_layer = query_layer.split(split, dim=-2)
# Use normal causal attention if local attention covers every tokens
if t <= 2 * self.block_size + self.num_global_tokens:
context_layer = self.causal_attention(
query_layer=query_layer,
key_layer=key_layer,
value_layer=value_layer,
attention_mask=attention_mask,
causal_shape=(t - self.num_global_tokens, t - self.num_global_tokens)
)
context_layer = torch.cat([global_query, context_layer], dim=-2)
return (self.reshape_output(context_layer), )
# Split K Q M on global and non global
global_key, key_layer = key_layer.split(split, dim=-2)
global_value, value_layer = value_layer.split(split, dim=-2)
global_mask, attention_mask = attention_mask.split(split, dim=-1)
n, h, t, d = key_layer.size()
# Get sparse idx
sparse_key, sparse_value, sparse_mask = (None, None, None)
if self.sparse_block_size and self.sparsity_factor > 0:
sparse_key, sparse_value, sparse_mask = self.get_sparse_elements(query_layer, key_layer, value_layer, attention_mask)
# Expand masks on heads
attention_mask = attention_mask.expand(-1, h, -1, -1)
global_mask = global_mask.expand(-1, h, -1, -1)
# Compute dot product attention
context_layer = self.attention(
query_layer,
key_layer,
value_layer,
attention_mask,
sparse_key=sparse_key,
sparse_value=sparse_value,
sparse_mask=sparse_mask,
global_key=global_key,
global_value=global_value,
global_mask=global_mask
)
# Merge pseudo global (causal) and local-sparse tokens
context_layer = torch.cat([global_query, context_layer], dim=-2)
context_layer = self.reshape_output(context_layer)
return (context_layer,)
def not_causal_forward(
self,
query_layer,
key_layer,
value_layer,
attention_mask=None,
output_attentions=False,
):
n, h, t, d = query_layer.size()
# Cat global mask
attention_mask = torch.nn.functional.pad(attention_mask, (self.num_global_tokens, 0), value=0)
# Use normal attention if local attention covers every tokens
if t <= 2 * self.block_size + self.num_global_tokens:
context_layer = self.full_attention(
query_layer=query_layer,
key_layer=key_layer,
value_layer=value_layer,
attention_mask=attention_mask
)
return (self.reshape_output(context_layer), )
# Split input into global tokens and other tokens
split = (self.num_global_tokens, t - self.num_global_tokens)
global_query, query_layer = query_layer.split(split, dim=-2)
# Get global_attention
bos = self.full_attention(
query_layer=global_query,
key_layer=key_layer,
value_layer=value_layer,
attention_mask=attention_mask
)
# Split K Q M on global and non global
global_key, key_layer = key_layer.split(split, dim=-2)
global_value, value_layer = value_layer.split(split, dim=-2)
global_mask, attention_mask = attention_mask.split(split, dim=-1)
n, h, t, d = key_layer.size()
# Get sparse idx
sparse_key, sparse_value, sparse_mask = (None, None, None)
if self.sparse_block_size and self.sparsity_factor > 0:
sparse_key, sparse_value, sparse_mask = self.get_sparse_elements(query_layer, key_layer, value_layer, attention_mask)
# Expand masks on heads
attention_mask = attention_mask.expand(-1, h, -1, -1)
global_mask = global_mask.expand(-1, h, -1, -1)
# Compute dot product attention
context_layer = self.attention(
query_layer,
key_layer,
value_layer,
attention_mask,
sparse_key=sparse_key,
sparse_value=sparse_value,
sparse_mask=sparse_mask,
global_key=global_key,
global_value=global_value,
global_mask=global_mask
)
# Merge global and local-sparse tokens
context_layer = torch.cat([bos, context_layer], dim=-2)
context_layer = self.reshape_output(context_layer)
return (context_layer,)
def cross_attention_forward(
self,
query_layer,
key_layer,
value_layer,
attention_mask=None,
output_attentions=False,
):
context_layer = self.full_attention(
query_layer=query_layer,
key_layer=key_layer,
value_layer=value_layer,
attention_mask=attention_mask
)
return (self.reshape_output(context_layer), )
def chunk(self, x, chunk_size):
n, h, t, d = x.size()
return x.reshape(n, h, -1, chunk_size, d)
class LSGCamembertLayer(CamembertLayer):
def __init__(self, config):
super().__init__(config)
self.attention = LSGAttention(config)
if self.add_cross_attention:
assert self.is_decoder, f"{self} should be used as a decoder model if cross attention is added"
self.crossattention = LSGAttention(config)
class LSGCamembertEncoder(CamembertEncoder):
def __init__(self, config):
super().__init__(config)
self.layer = nn.ModuleList([LSGCamembertLayer(config) for _ in range(config.num_hidden_layers)])
assert hasattr(config, "num_global_tokens")
self.num_global_tokens = config.num_global_tokens
self.pad_idx = config.pad_token_id
assert hasattr(config, "block_size") and hasattr(config, "adaptive")
self.block_size = config.block_size
self.adaptive = config.adaptive
self.mask_first_token = config.mask_first_token
self.pool_with_global = config.pool_with_global
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPastAndCrossAttentions]:
mask_value = torch.finfo(attention_mask.dtype).min
n, _, __, t = attention_mask.size()
if not (self.config.is_decoder and encoder_hidden_states is not None):
b = self.block_size * 2
pad = t % self.block_size
# Check if t is multiple of block_size and pad
if self.adaptive and t > b and pad > 0:
pad_length = self.block_size - pad
hidden_states = torch.nn.functional.pad(hidden_states.transpose(-1, -2), (0, pad_length), value=0.).transpose(-1, -2)
attention_mask = torch.nn.functional.pad(attention_mask, (0, pad_length), value=mask_value)
if self.mask_first_token:
attention_mask[..., 0] = mask_value
encoder_outputs = super().forward(
hidden_states=hidden_states,
attention_mask=attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict
)
sequence_output = encoder_outputs[0]
if self.pool_with_global:
sequence_output[:, self.num_global_tokens] = sequence_output[:, 0]
# Adapt sequence to initial shape
sequence_output = sequence_output[..., self.num_global_tokens: t + self.num_global_tokens, :]
if not return_dict:
return (sequence_output, ) + encoder_outputs[1:]
encoder_outputs.last_hidden_state = sequence_output
return encoder_outputs
class LSGCamembertPreTrainedModel(CamembertPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = LSGCamembertConfig
base_model_prefix = "roberta"
supports_gradient_checkpointing = True
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, (CamembertEncoder, LSGCamembertEncoder)):
module.gradient_checkpointing = value
class LSGCamembertModel(LSGCamembertPreTrainedModel, CamembertModel):
"""
This class overrides :class:`~transformers.CamembertModel`. Please check the superclass for the appropriate
documentation alongside usage examples.
"""
_no_split_modules = []
def __init__(self, config, add_pooling_layer=True):
LSGCamembertPreTrainedModel.__init__(self, config)
self.embeddings = LSGCamembertEmbeddings(config)
self.encoder = LSGCamembertEncoder(config)
self.pooler = CamembertPooler(config) if add_pooling_layer else None
if config.add_cross_attention:
logger.warning(
"Cross attention is computed using full attention since it is not LSG compatible."
)
# Initialize weights and apply final processing
self.post_init()
def get_extended_attention_mask(self, attention_mask, input_shape, device=None):
# Do not rely on original triangular mask from BERT/RoBERTa for causalLM
if attention_mask.dim() == 3:
extended_attention_mask = attention_mask[:, None, :, :]
elif attention_mask.dim() == 2:
extended_attention_mask = attention_mask[:, None, None, :]
else:
raise ValueError(
f"Wrong shape for input_ids (shape {input_shape}) or attention_mask (shape {attention_mask.shape})"
)
extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility
extended_attention_mask = (1.0 - extended_attention_mask) * torch.finfo(extended_attention_mask.dtype).min
return extended_attention_mask
class LSGCamembertForCausalLM(LSGCamembertPreTrainedModel, CamembertForCausalLM):
_tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"]
def __init__(self, config):
LSGCamembertPreTrainedModel.__init__(self, config)
if not config.is_decoder:
logger.warning("If you want to use `LSGCamembertLMHeadModel` as a standalone, add `is_decoder=True.`")
self.roberta = LSGCamembertModel(config, add_pooling_layer=False)
self.lm_head = CamembertLMHead(config)
# Initialize weights and apply final processing
self.post_init()
class LSGCamembertForMaskedLM(LSGCamembertPreTrainedModel, CamembertForMaskedLM):
"""
This class overrides :class:`~transformers.CamembertForMaskedLM`. Please check the superclass for the appropriate
documentation alongside usage examples.
"""
_tied_weights_keys = ["lm_head.decoder.weight", "lm_head.decoder.bias"]
def __init__(self, config):
LSGCamembertPreTrainedModel.__init__(self, config)
if config.is_decoder:
logger.warning(
"If you want to use `LSGCamembertForMaskedLM` make sure `config.is_decoder=False` for "
"bi-directional self-attention."
)
self.roberta = LSGCamembertModel(config, add_pooling_layer=False)
self.lm_head = CamembertLMHead(config)
# Initialize weights and apply final processing
self.post_init()
class LSGCamembertForSequenceClassification(LSGCamembertPreTrainedModel, CamembertForSequenceClassification):
"""
This class overrides :class:`~transformers.CamembertForSequenceClassification`. Please check the superclass for the
appropriate documentation alongside usage examples.
"""
def __init__(self, config):
LSGCamembertPreTrainedModel.__init__(self, config)
self.num_labels = config.num_labels
self.config = config
self.roberta = LSGCamembertModel(config, add_pooling_layer=False)
self.classifier = CamembertClassificationHead(config)
# Initialize weights and apply final processing
self.post_init()
class LSGCamembertForMultipleChoice(LSGCamembertPreTrainedModel, CamembertForMultipleChoice):
"""
This class overrides :class:`~transformers.CamembertForMultipleChoice`. Please check the superclass for the
appropriate documentation alongside usage examples.
"""
def __init__(self, config):
LSGCamembertPreTrainedModel.__init__(self, config)
self.roberta = LSGCamembertModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, 1)
# Initialize weights and apply final processing
self.post_init()
class LSGCamembertForTokenClassification(LSGCamembertPreTrainedModel, CamembertForTokenClassification):
"""
This class overrides :class:`~transformers.CamembertForTokenClassification`. Please check the superclass for the
appropriate documentation alongside usage examples.
"""
def __init__(self, config):
LSGCamembertPreTrainedModel.__init__(self, config)
self.num_labels = config.num_labels
self.roberta = LSGCamembertModel(config, add_pooling_layer=False)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
class LSGCamembertForQuestionAnswering(LSGCamembertPreTrainedModel, CamembertForQuestionAnswering):
"""
This class overrides :class:`~transformers.CamembertForQuestionAnswering`. Please check the superclass for the
appropriate documentation alongside usage examples.
"""
def __init__(self, config):
LSGCamembertPreTrainedModel.__init__(self, config)
self.num_labels = config.num_labels
self.roberta = LSGCamembertModel(config, add_pooling_layer=False)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
def str_to_class(classname):
return getattr(sys.modules[__name__], classname)
# Register model in Auto API
try:
LSGCamembertConfig.register_for_auto_class()
for key, value in AUTO_MAP.items():
str_to_class(value.split(".")[-1]).register_for_auto_class(key)
except:
warn("AutoRegister isn't available, you'll have to manually copy modeling.py after .save_pretrained(...).")
warn("Update to transformers >= 4.35.2 to fix.") |