cassador commited on
Commit
3038ada
·
verified ·
1 Parent(s): 2c816f5

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,486 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: indobenchmark/indobert-base-p2
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ metrics:
7
+ - pearson_cosine
8
+ - spearman_cosine
9
+ - pearson_manhattan
10
+ - spearman_manhattan
11
+ - pearson_euclidean
12
+ - spearman_euclidean
13
+ - pearson_dot
14
+ - spearman_dot
15
+ - pearson_max
16
+ - spearman_max
17
+ pipeline_tag: sentence-similarity
18
+ tags:
19
+ - sentence-transformers
20
+ - sentence-similarity
21
+ - feature-extraction
22
+ - generated_from_trainer
23
+ - dataset_size:133472
24
+ - loss:SoftmaxLoss
25
+ widget:
26
+ - source_sentence: Dua tim anak-anak, yang satu berwarna hijau dan yang lainnya berwarna
27
+ merah, bermain bersama dalam permainan Rugby saat hujan.
28
+ sentences:
29
+ - Tiga orang berada di dalam perahu.
30
+ - seorang pria di atas sepeda
31
+ - Tim rugby anak-anak, merah versus hijau bermain di tengah hujan.
32
+ - source_sentence: Seorang pria melakukan perawatan di rel kereta api
33
+ sentences:
34
+ - Dua orang terlibat dalam percakapan.
35
+ - Ada seorang wanita melakukan pekerjaan di rel kereta api.
36
+ - orang-orang duduk di bar
37
+ - source_sentence: Sepasang suami istri dengan pakaian renang berjalan di pantai.
38
+ sentences:
39
+ - pasangan itu duduk di dalam
40
+ - Pria itu sedang makan.
41
+ - Dua orang sedang berpose untuk difoto.
42
+ - source_sentence: Dua orang sedang duduk di samping api unggun bertumpuk kayu di
43
+ malam hari.
44
+ sentences:
45
+ - Seseorang memegang jeruk dan berjalan
46
+ - Orang-orang duduk di luar di malam hari.
47
+ - Orang-orang berada di luar.
48
+ - source_sentence: Wanita profesional di meja pendaftaran acara sementara pria berjas
49
+ melihat.
50
+ sentences:
51
+ - Orang-orang berkumpul untuk sebuah acara.
52
+ - Seorang wanita sedang berjalan menuju taman.
53
+ - Ada seorang anak yang tersenyum untuk difoto.
54
+ model-index:
55
+ - name: SentenceTransformer based on indobenchmark/indobert-base-p2
56
+ results:
57
+ - task:
58
+ type: semantic-similarity
59
+ name: Semantic Similarity
60
+ dataset:
61
+ name: sts dev
62
+ type: sts-dev
63
+ metrics:
64
+ - type: pearson_cosine
65
+ value: 0.23146247451934734
66
+ name: Pearson Cosine
67
+ - type: spearman_cosine
68
+ value: 0.23182555096720683
69
+ name: Spearman Cosine
70
+ - type: pearson_manhattan
71
+ value: 0.19847600869622337
72
+ name: Pearson Manhattan
73
+ - type: spearman_manhattan
74
+ value: 0.2038189662328075
75
+ name: Spearman Manhattan
76
+ - type: pearson_euclidean
77
+ value: 0.198744291061789
78
+ name: Pearson Euclidean
79
+ - type: spearman_euclidean
80
+ value: 0.20385658228775938
81
+ name: Spearman Euclidean
82
+ - type: pearson_dot
83
+ value: 0.2561502821889763
84
+ name: Pearson Dot
85
+ - type: spearman_dot
86
+ value: 0.25101474046220823
87
+ name: Spearman Dot
88
+ - type: pearson_max
89
+ value: 0.2561502821889763
90
+ name: Pearson Max
91
+ - type: spearman_max
92
+ value: 0.25101474046220823
93
+ name: Spearman Max
94
+ - task:
95
+ type: semantic-similarity
96
+ name: Semantic Similarity
97
+ dataset:
98
+ name: sts test
99
+ type: sts-test
100
+ metrics:
101
+ - type: pearson_cosine
102
+ value: 0.5914831439397401
103
+ name: Pearson Cosine
104
+ - type: spearman_cosine
105
+ value: 0.5978838704506128
106
+ name: Spearman Cosine
107
+ - type: pearson_manhattan
108
+ value: 0.5131648451956073
109
+ name: Pearson Manhattan
110
+ - type: spearman_manhattan
111
+ value: 0.5147175261736068
112
+ name: Spearman Manhattan
113
+ - type: pearson_euclidean
114
+ value: 0.5942850778734059
115
+ name: Pearson Euclidean
116
+ - type: spearman_euclidean
117
+ value: 0.6001963453484881
118
+ name: Spearman Euclidean
119
+ - type: pearson_dot
120
+ value: 0.5880400881430983
121
+ name: Pearson Dot
122
+ - type: spearman_dot
123
+ value: 0.5933998114680769
124
+ name: Spearman Dot
125
+ - type: pearson_max
126
+ value: 0.5942850778734059
127
+ name: Pearson Max
128
+ - type: spearman_max
129
+ value: 0.6001963453484881
130
+ name: Spearman Max
131
+ ---
132
+
133
+ # SentenceTransformer based on indobenchmark/indobert-base-p2
134
+
135
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [indobenchmark/indobert-base-p2](https://huggingface.co/indobenchmark/indobert-base-p2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
136
+
137
+ ## Model Details
138
+
139
+ ### Model Description
140
+ - **Model Type:** Sentence Transformer
141
+ - **Base model:** [indobenchmark/indobert-base-p2](https://huggingface.co/indobenchmark/indobert-base-p2) <!-- at revision 94b4e0a82081fa57f227fcc2024d1ea89b57ac1f -->
142
+ - **Maximum Sequence Length:** 512 tokens
143
+ - **Output Dimensionality:** 768 tokens
144
+ - **Similarity Function:** Cosine Similarity
145
+ <!-- - **Training Dataset:** Unknown -->
146
+ <!-- - **Language:** Unknown -->
147
+ <!-- - **License:** Unknown -->
148
+
149
+ ### Model Sources
150
+
151
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
152
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
153
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
154
+
155
+ ### Full Model Architecture
156
+
157
+ ```
158
+ SentenceTransformer(
159
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
160
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
161
+ )
162
+ ```
163
+
164
+ ## Usage
165
+
166
+ ### Direct Usage (Sentence Transformers)
167
+
168
+ First install the Sentence Transformers library:
169
+
170
+ ```bash
171
+ pip install -U sentence-transformers
172
+ ```
173
+
174
+ Then you can load this model and run inference.
175
+ ```python
176
+ from sentence_transformers import SentenceTransformer
177
+
178
+ # Download from the 🤗 Hub
179
+ model = SentenceTransformer("cassador/indobert-snli-v1")
180
+ # Run inference
181
+ sentences = [
182
+ 'Wanita profesional di meja pendaftaran acara sementara pria berjas melihat.',
183
+ 'Orang-orang berkumpul untuk sebuah acara.',
184
+ 'Ada seorang anak yang tersenyum untuk difoto.',
185
+ ]
186
+ embeddings = model.encode(sentences)
187
+ print(embeddings.shape)
188
+ # [3, 768]
189
+
190
+ # Get the similarity scores for the embeddings
191
+ similarities = model.similarity(embeddings, embeddings)
192
+ print(similarities.shape)
193
+ # [3, 3]
194
+ ```
195
+
196
+ <!--
197
+ ### Direct Usage (Transformers)
198
+
199
+ <details><summary>Click to see the direct usage in Transformers</summary>
200
+
201
+ </details>
202
+ -->
203
+
204
+ <!--
205
+ ### Downstream Usage (Sentence Transformers)
206
+
207
+ You can finetune this model on your own dataset.
208
+
209
+ <details><summary>Click to expand</summary>
210
+
211
+ </details>
212
+ -->
213
+
214
+ <!--
215
+ ### Out-of-Scope Use
216
+
217
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
218
+ -->
219
+
220
+ ## Evaluation
221
+
222
+ ### Metrics
223
+
224
+ #### Semantic Similarity
225
+ * Dataset: `sts-dev`
226
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
227
+
228
+ | Metric | Value |
229
+ |:--------------------|:-----------|
230
+ | pearson_cosine | 0.2315 |
231
+ | **spearman_cosine** | **0.2318** |
232
+ | pearson_manhattan | 0.1985 |
233
+ | spearman_manhattan | 0.2038 |
234
+ | pearson_euclidean | 0.1987 |
235
+ | spearman_euclidean | 0.2039 |
236
+ | pearson_dot | 0.2562 |
237
+ | spearman_dot | 0.251 |
238
+ | pearson_max | 0.2562 |
239
+ | spearman_max | 0.251 |
240
+
241
+ #### Semantic Similarity
242
+ * Dataset: `sts-test`
243
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
244
+
245
+ | Metric | Value |
246
+ |:--------------------|:-----------|
247
+ | pearson_cosine | 0.5915 |
248
+ | **spearman_cosine** | **0.5979** |
249
+ | pearson_manhattan | 0.5132 |
250
+ | spearman_manhattan | 0.5147 |
251
+ | pearson_euclidean | 0.5943 |
252
+ | spearman_euclidean | 0.6002 |
253
+ | pearson_dot | 0.588 |
254
+ | spearman_dot | 0.5934 |
255
+ | pearson_max | 0.5943 |
256
+ | spearman_max | 0.6002 |
257
+
258
+ <!--
259
+ ## Bias, Risks and Limitations
260
+
261
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
262
+ -->
263
+
264
+ <!--
265
+ ### Recommendations
266
+
267
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
268
+ -->
269
+
270
+ ## Training Details
271
+
272
+ ### Training Dataset
273
+
274
+ #### Unnamed Dataset
275
+
276
+
277
+ * Size: 133,472 training samples
278
+ * Columns: <code>label</code>, <code>kalimat1</code>, and <code>kalimat2</code>
279
+ * Approximate statistics based on the first 1000 samples:
280
+ | | label | kalimat1 | kalimat2 |
281
+ |:--------|:------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
282
+ | type | int | string | string |
283
+ | details | <ul><li>0: ~50.00%</li><li>1: ~50.00%</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 16.47 tokens</li><li>max: 48 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.62 tokens</li><li>max: 22 tokens</li></ul> |
284
+ * Samples:
285
+ | label | kalimat1 | kalimat2 |
286
+ |:---------------|:------------------------------------------------------------------|:----------------------------------------------------------------|
287
+ | <code>0</code> | <code>Seseorang di atas kuda melompati pesawat yang rusak.</code> | <code>Seseorang sedang makan malam, memesan telur dadar.</code> |
288
+ | <code>1</code> | <code>Seseorang di atas kuda melompati pesawat yang rusak.</code> | <code>Seseorang berada di luar ruangan, di atas kuda.</code> |
289
+ | <code>1</code> | <code>Anak-anak tersenyum dan melambai ke kamera</code> | <code>Ada anak-anak yang hadir</code> |
290
+ * Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
291
+
292
+ ### Evaluation Dataset
293
+
294
+ #### Unnamed Dataset
295
+
296
+
297
+ * Size: 6,607 evaluation samples
298
+ * Columns: <code>label</code>, <code>kalimat1</code>, and <code>kalimat2</code>
299
+ * Approximate statistics based on the first 1000 samples:
300
+ | | label | kalimat1 | kalimat2 |
301
+ |:--------|:------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
302
+ | type | int | string | string |
303
+ | details | <ul><li>0: ~50.10%</li><li>1: ~49.90%</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 16.87 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 9.45 tokens</li><li>max: 27 tokens</li></ul> |
304
+ * Samples:
305
+ | label | kalimat1 | kalimat2 |
306
+ |:---------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------|
307
+ | <code>1</code> | <code>Dua wanita berpelukan sambil memegang paket untuk pergi.</code> | <code>Dua wanita memegang paket.</code> |
308
+ | <code>0</code> | <code>Dua wanita berpelukan sambil memegang paket untuk pergi.</code> | <code>Orang-orang berkelahi di luar toko makanan.</code> |
309
+ | <code>1</code> | <code>Dua anak kecil berbaju biru, satu dengan nomor 9 dan satu dengan nomor 2 berdiri di tangga kayu di kamar mandi dan mencuci tangan di wastafel.</code> | <code>Dua anak dengan kaus bernomor mencuci tangan mereka.</code> |
310
+ * Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
311
+
312
+ ### Training Hyperparameters
313
+ #### Non-Default Hyperparameters
314
+
315
+ - `eval_strategy`: steps
316
+ - `per_device_train_batch_size`: 32
317
+ - `per_device_eval_batch_size`: 32
318
+ - `learning_rate`: 2e-05
319
+ - `num_train_epochs`: 2
320
+ - `warmup_ratio`: 0.1
321
+ - `fp16`: True
322
+
323
+ #### All Hyperparameters
324
+ <details><summary>Click to expand</summary>
325
+
326
+ - `overwrite_output_dir`: False
327
+ - `do_predict`: False
328
+ - `eval_strategy`: steps
329
+ - `prediction_loss_only`: True
330
+ - `per_device_train_batch_size`: 32
331
+ - `per_device_eval_batch_size`: 32
332
+ - `per_gpu_train_batch_size`: None
333
+ - `per_gpu_eval_batch_size`: None
334
+ - `gradient_accumulation_steps`: 1
335
+ - `eval_accumulation_steps`: None
336
+ - `learning_rate`: 2e-05
337
+ - `weight_decay`: 0.0
338
+ - `adam_beta1`: 0.9
339
+ - `adam_beta2`: 0.999
340
+ - `adam_epsilon`: 1e-08
341
+ - `max_grad_norm`: 1.0
342
+ - `num_train_epochs`: 2
343
+ - `max_steps`: -1
344
+ - `lr_scheduler_type`: linear
345
+ - `lr_scheduler_kwargs`: {}
346
+ - `warmup_ratio`: 0.1
347
+ - `warmup_steps`: 0
348
+ - `log_level`: passive
349
+ - `log_level_replica`: warning
350
+ - `log_on_each_node`: True
351
+ - `logging_nan_inf_filter`: True
352
+ - `save_safetensors`: True
353
+ - `save_on_each_node`: False
354
+ - `save_only_model`: False
355
+ - `restore_callback_states_from_checkpoint`: False
356
+ - `no_cuda`: False
357
+ - `use_cpu`: False
358
+ - `use_mps_device`: False
359
+ - `seed`: 42
360
+ - `data_seed`: None
361
+ - `jit_mode_eval`: False
362
+ - `use_ipex`: False
363
+ - `bf16`: False
364
+ - `fp16`: True
365
+ - `fp16_opt_level`: O1
366
+ - `half_precision_backend`: auto
367
+ - `bf16_full_eval`: False
368
+ - `fp16_full_eval`: False
369
+ - `tf32`: None
370
+ - `local_rank`: 0
371
+ - `ddp_backend`: None
372
+ - `tpu_num_cores`: None
373
+ - `tpu_metrics_debug`: False
374
+ - `debug`: []
375
+ - `dataloader_drop_last`: False
376
+ - `dataloader_num_workers`: 0
377
+ - `dataloader_prefetch_factor`: None
378
+ - `past_index`: -1
379
+ - `disable_tqdm`: False
380
+ - `remove_unused_columns`: True
381
+ - `label_names`: None
382
+ - `load_best_model_at_end`: False
383
+ - `ignore_data_skip`: False
384
+ - `fsdp`: []
385
+ - `fsdp_min_num_params`: 0
386
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
387
+ - `fsdp_transformer_layer_cls_to_wrap`: None
388
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
389
+ - `deepspeed`: None
390
+ - `label_smoothing_factor`: 0.0
391
+ - `optim`: adamw_torch
392
+ - `optim_args`: None
393
+ - `adafactor`: False
394
+ - `group_by_length`: False
395
+ - `length_column_name`: length
396
+ - `ddp_find_unused_parameters`: None
397
+ - `ddp_bucket_cap_mb`: None
398
+ - `ddp_broadcast_buffers`: False
399
+ - `dataloader_pin_memory`: True
400
+ - `dataloader_persistent_workers`: False
401
+ - `skip_memory_metrics`: True
402
+ - `use_legacy_prediction_loop`: False
403
+ - `push_to_hub`: False
404
+ - `resume_from_checkpoint`: None
405
+ - `hub_model_id`: None
406
+ - `hub_strategy`: every_save
407
+ - `hub_private_repo`: False
408
+ - `hub_always_push`: False
409
+ - `gradient_checkpointing`: False
410
+ - `gradient_checkpointing_kwargs`: None
411
+ - `include_inputs_for_metrics`: False
412
+ - `eval_do_concat_batches`: True
413
+ - `fp16_backend`: auto
414
+ - `push_to_hub_model_id`: None
415
+ - `push_to_hub_organization`: None
416
+ - `mp_parameters`:
417
+ - `auto_find_batch_size`: False
418
+ - `full_determinism`: False
419
+ - `torchdynamo`: None
420
+ - `ray_scope`: last
421
+ - `ddp_timeout`: 1800
422
+ - `torch_compile`: False
423
+ - `torch_compile_backend`: None
424
+ - `torch_compile_mode`: None
425
+ - `dispatch_batches`: None
426
+ - `split_batches`: None
427
+ - `include_tokens_per_second`: False
428
+ - `include_num_input_tokens_seen`: False
429
+ - `neftune_noise_alpha`: None
430
+ - `optim_target_modules`: None
431
+ - `batch_eval_metrics`: False
432
+ - `batch_sampler`: batch_sampler
433
+ - `multi_dataset_batch_sampler`: proportional
434
+
435
+ </details>
436
+
437
+ ### Training Logs
438
+ | Epoch | Step | sts-dev_spearman_cosine | sts-test_spearman_cosine |
439
+ |:-----:|:----:|:-----------------------:|:------------------------:|
440
+ | 0 | 0 | 0.2318 | - |
441
+ | 2.0 | 8342 | - | 0.5979 |
442
+
443
+
444
+ ### Framework Versions
445
+ - Python: 3.10.12
446
+ - Sentence Transformers: 3.0.1
447
+ - Transformers: 4.41.2
448
+ - PyTorch: 2.3.0+cu121
449
+ - Accelerate: 0.31.0
450
+ - Datasets: 2.20.0
451
+ - Tokenizers: 0.19.1
452
+
453
+ ## Citation
454
+
455
+ ### BibTeX
456
+
457
+ #### Sentence Transformers and SoftmaxLoss
458
+ ```bibtex
459
+ @inproceedings{reimers-2019-sentence-bert,
460
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
461
+ author = "Reimers, Nils and Gurevych, Iryna",
462
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
463
+ month = "11",
464
+ year = "2019",
465
+ publisher = "Association for Computational Linguistics",
466
+ url = "https://arxiv.org/abs/1908.10084",
467
+ }
468
+ ```
469
+
470
+ <!--
471
+ ## Glossary
472
+
473
+ *Clearly define terms in order to be accessible across audiences.*
474
+ -->
475
+
476
+ <!--
477
+ ## Model Card Authors
478
+
479
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
480
+ -->
481
+
482
+ <!--
483
+ ## Model Card Contact
484
+
485
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
486
+ -->
config.json ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "indobenchmark/indobert-base-p2",
3
+ "_num_labels": 5,
4
+ "architectures": [
5
+ "BertModel"
6
+ ],
7
+ "attention_probs_dropout_prob": 0.1,
8
+ "classifier_dropout": null,
9
+ "directionality": "bidi",
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "id2label": {
14
+ "0": "LABEL_0",
15
+ "1": "LABEL_1",
16
+ "2": "LABEL_2",
17
+ "3": "LABEL_3",
18
+ "4": "LABEL_4"
19
+ },
20
+ "initializer_range": 0.02,
21
+ "intermediate_size": 3072,
22
+ "label2id": {
23
+ "LABEL_0": 0,
24
+ "LABEL_1": 1,
25
+ "LABEL_2": 2,
26
+ "LABEL_3": 3,
27
+ "LABEL_4": 4
28
+ },
29
+ "layer_norm_eps": 1e-12,
30
+ "max_position_embeddings": 512,
31
+ "model_type": "bert",
32
+ "num_attention_heads": 12,
33
+ "num_hidden_layers": 12,
34
+ "output_past": true,
35
+ "pad_token_id": 0,
36
+ "pooler_fc_size": 768,
37
+ "pooler_num_attention_heads": 12,
38
+ "pooler_num_fc_layers": 3,
39
+ "pooler_size_per_head": 128,
40
+ "pooler_type": "first_token_transform",
41
+ "position_embedding_type": "absolute",
42
+ "torch_dtype": "float32",
43
+ "transformers_version": "4.41.2",
44
+ "type_vocab_size": 2,
45
+ "use_cache": true,
46
+ "vocab_size": 50000
47
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4510764cfed3dae650dd08c6828a8211fb824f2ce0daee319c8c871715d09e11
3
+ size 497787752
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 1000000000000000019884624838656,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff