famor6644 commited on
Commit
fce0046
·
verified ·
1 Parent(s): 8c2f9df

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +12 -11
README.md CHANGED
@@ -6,9 +6,9 @@ base_model:
6
  ---
7
  # Libra: Large Chinese-based Safeguard for AI Content
8
 
9
- **Libra Guard** 是一款面向中文大型语言模型(LLM)的安全护栏模型。Libra Guard 采用两阶段渐进式训练流程,先利用可扩展的合成样本预训练,再使用高质量真实数据进行微调,最大化利用数据并降低对人工标注的依赖。实验表明,Libra Guard 在 Libra Bench 上的表现显著优于同类开源模型(如 ShieldLM等),在多个任务上可与先进商用模型(如 GPT-4o)接近,为中文 LLM 的安全治理提供了更强的支持与评测工具。
10
 
11
- ***Libra Guard** is a safeguard model for Chinese large language models (LLMs). Libra Guard adopts a two-stage progressive training process: first, it uses scalable synthetic samples for pretraining, then employs high-quality real-world data for fine-tuning, thus maximizing data utilization while reducing reliance on manual annotation. Experiments show that Libra Guard significantly outperforms similar open-source models (such as ShieldLM) on Libra Bench and is close to advanced commercial models (such as GPT-4o) in multiple tasks, providing stronger support and evaluation tools for Chinese LLM safety governance.*
12
 
13
  同时,我们基于多种开源模型构建了不同参数规模的 Libra-Guard 系列模型。本仓库为Libra-Guard-Qwen2.5-3B-Instruct的仓库。
14
 
@@ -30,9 +30,9 @@ pip install transformers>=4.37.0
30
  ```
31
 
32
  ## 实验结果(Experiment Results)
33
- 在 Libra Bench 的多场景评测中,Libra Guard 系列模型相较于同类开源模型(如 ShieldLM)表现更佳,并在多个任务上与先进商用模型(如 GPT-4o)相当。下表给出了 Libra-Guard-Qwen2.5-3B-Instruct 在部分核心指标上的对比:
34
 
35
- *In the multi-scenario evaluation on Libra Bench, the Libra Guard series outperforms similar open-source models such as ShieldLM, and is on par with advanced commercial models like GPT-4o in multiple tasks. The table below shows a comparison of Libra-Guard-Qwen2.5-3B-Instruct on some key metrics:*
36
 
37
  | 模型 | Average | Synthesis | Safety-Prompts | BeaverTails\_30k |
38
  |------------------------------------|-----------|--------|----------|----------|
@@ -118,14 +118,15 @@ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
118
  *If you use this project in academic or research scenarios, please cite the following references:*
119
 
120
  ```bibtex
121
- @misc{libra_guard_qwen_14b_chat_2025,
122
- title = {Libra Guard Qwen2.5-3B-Instruct: A Safeguard Model for Chinese LLMs},
123
- author = {X, ... and Y, ...},
124
- year = {2025},
125
- url = {https://github.com/.../Libra-Guard-Qwen2.5-3B-Instruct}
 
126
  }
127
  ```
128
 
129
- 感谢对 Libra Guard 的关注与使用,如有任何问题或建议,欢迎提交 Issue 或 Pull Request!
130
 
131
- *Thank you for your interest in Libra Guard. If you have any questions or suggestions, feel free to submit an Issue or Pull Request!*
 
6
  ---
7
  # Libra: Large Chinese-based Safeguard for AI Content
8
 
9
+ **Libra-Guard** 是一款面向中文大型语言模型(LLM)的安全护栏模型。Libra-Guard 采用两阶段渐进式训练流程,先利用可扩展的合成样本预训练,再使用高质量真实数据进行微调,最大化利用数据并降低对人工标注的依赖。实验表明,Libra-Guard 在 Libra-Test 上的表现显著优于同类开源模型(如 ShieldLM等),在多个任务上可与先进商用模型(如 GPT-4o)接近,为中文 LLM 的安全治理提供了更强的支持与评测工具。
10
 
11
+ ***Libra-Guard** is a safeguard model for Chinese large language models (LLMs). Libra-Guard adopts a two-stage progressive training process: first, it uses scalable synthetic samples for pretraining, then employs high-quality real-world data for fine-tuning, thus maximizing data utilization while reducing reliance on manual annotation. Experiments show that Libra-Guard significantly outperforms similar open-source models (such as ShieldLM) on Libra-Test and is close to advanced commercial models (such as GPT-4o) in multiple tasks, providing stronger support and evaluation tools for Chinese LLM safety governance.*
12
 
13
  同时,我们基于多种开源模型构建了不同参数规模的 Libra-Guard 系列模型。本仓库为Libra-Guard-Qwen2.5-3B-Instruct的仓库。
14
 
 
30
  ```
31
 
32
  ## 实验结果(Experiment Results)
33
+ 在 Libra-Test 的多场景评测中,Libra-Guard 系列模型相较于同类开源模型(如 ShieldLM)表现更佳,并在多个任务上与先进商用模型(如 GPT-4o)相当。下表给出了 Libra-Guard-Qwen2.5-3B-Instruct 在部分核心指标上的对比:
34
 
35
+ *In the multi-scenario evaluation on Libra-Test, the Libra-Guard series outperforms similar open-source models such as ShieldLM, and is on par with advanced commercial models like GPT-4o in multiple tasks. The table below shows a comparison of Libra-Guard-Qwen2.5-3B-Instruct on some key metrics:*
36
 
37
  | 模型 | Average | Synthesis | Safety-Prompts | BeaverTails\_30k |
38
  |------------------------------------|-----------|--------|----------|----------|
 
118
  *If you use this project in academic or research scenarios, please cite the following references:*
119
 
120
  ```bibtex
121
+ @misc{libra,
122
+ title = {Libra: Large Chinese-based Safeguard for AI Content},
123
+ url = {https://github.com/caskcsg/Libra/},
124
+ author= {Li, Ziyang and Yu, Huimu and Wu, Xing and Lin, Yuxuan and Liu, Dingqin and Hu, Songlin},
125
+ month = {January},
126
+ year = {2025}
127
  }
128
  ```
129
 
130
+ 感谢对 Libra-Guard 的关注与使用,如有任何问题或建议,欢迎提交 Issue 或 Pull Request!
131
 
132
+ *Thank you for your interest in Libra-Guard. If you have any questions or suggestions, feel free to submit an Issue or Pull Request!*