cartesinus
commited on
Commit
·
0bd1713
1
Parent(s):
5b43243
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: xlm-r-base-amazon-massive-slot
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# xlm-r-base-amazon-massive-slot
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.5006
|
23 |
+
- Precision: 0.8144
|
24 |
+
- Recall: 0.8683
|
25 |
+
- F1: 0.8405
|
26 |
+
- Accuracy: 0.9333
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 2e-05
|
46 |
+
- train_batch_size: 16
|
47 |
+
- eval_batch_size: 16
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 20
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
+
| 1.1445 | 1.0 | 720 | 0.5446 | 0.6681 | 0.6770 | 0.6725 | 0.8842 |
|
58 |
+
| 0.5908 | 2.0 | 1440 | 0.3869 | 0.7331 | 0.7706 | 0.7514 | 0.9083 |
|
59 |
+
| 0.3228 | 3.0 | 2160 | 0.3285 | 0.7658 | 0.8288 | 0.7961 | 0.9219 |
|
60 |
+
| 0.2561 | 4.0 | 2880 | 0.3063 | 0.7819 | 0.8402 | 0.8100 | 0.9257 |
|
61 |
+
| 0.1808 | 5.0 | 3600 | 0.3000 | 0.8011 | 0.8429 | 0.8214 | 0.9305 |
|
62 |
+
| 0.1487 | 6.0 | 4320 | 0.2982 | 0.8201 | 0.8492 | 0.8344 | 0.9361 |
|
63 |
+
| 0.1156 | 7.0 | 5040 | 0.3252 | 0.8009 | 0.8569 | 0.8280 | 0.9313 |
|
64 |
+
| 0.094 | 8.0 | 5760 | 0.3481 | 0.8127 | 0.8502 | 0.8310 | 0.9333 |
|
65 |
+
| 0.0843 | 9.0 | 6480 | 0.3764 | 0.7990 | 0.8613 | 0.8290 | 0.9304 |
|
66 |
+
| 0.0641 | 10.0 | 7200 | 0.3822 | 0.7930 | 0.8609 | 0.8256 | 0.9280 |
|
67 |
+
| 0.0547 | 11.0 | 7920 | 0.3889 | 0.8223 | 0.8649 | 0.8431 | 0.9354 |
|
68 |
+
| 0.04 | 12.0 | 8640 | 0.4416 | 0.8019 | 0.8633 | 0.8314 | 0.9288 |
|
69 |
+
| 0.0368 | 13.0 | 9360 | 0.4339 | 0.8117 | 0.8606 | 0.8354 | 0.9328 |
|
70 |
+
| 0.0297 | 14.0 | 10080 | 0.4698 | 0.8062 | 0.8623 | 0.8333 | 0.9314 |
|
71 |
+
| 0.0227 | 15.0 | 10800 | 0.4763 | 0.8058 | 0.8656 | 0.8346 | 0.9327 |
|
72 |
+
| 0.0185 | 16.0 | 11520 | 0.4793 | 0.8124 | 0.8613 | 0.8361 | 0.9326 |
|
73 |
+
| 0.0182 | 17.0 | 12240 | 0.4835 | 0.8191 | 0.8629 | 0.8404 | 0.9341 |
|
74 |
+
| 0.0147 | 18.0 | 12960 | 0.4981 | 0.8140 | 0.8693 | 0.8407 | 0.9336 |
|
75 |
+
| 0.0111 | 19.0 | 13680 | 0.5002 | 0.8099 | 0.8719 | 0.8398 | 0.9340 |
|
76 |
+
| 0.0128 | 20.0 | 14400 | 0.5006 | 0.8144 | 0.8683 | 0.8405 | 0.9333 |
|
77 |
+
|
78 |
+
|
79 |
+
### Framework versions
|
80 |
+
|
81 |
+
- Transformers 4.22.2
|
82 |
+
- Pytorch 1.12.1+cu113
|
83 |
+
- Datasets 2.5.1
|
84 |
+
- Tokenizers 0.12.1
|