--- language: - en license: mit tags: - generated_from_trainer - nlu - intent-classification datasets: - AmazonScience/massive metrics: - accuracy - f1 pipeline_tag: text-classification base_model: microsoft/Multilingual-MiniLM-L12-H384 model-index: - name: multilingual_minilm-amazon-massive-intent results: - task: type: intent-classification name: intent-classification dataset: name: MASSIVE type: AmazonScience/massive split: test metrics: - type: f1 value: 0.8234 name: F1 --- # multilingual_minilm-amazon-massive-intent This model is a fine-tuned version of [microsoft/Multilingual-MiniLM-L12-H384](https://huggingface.co/microsoft/Multilingual-MiniLM-L12-H384) on the [MASSIVE1.1](https://huggingface.co/datasets/AmazonScience/massive) dataset. It achieves the following results on the evaluation set: - Loss: 0.8941 - Accuracy: 0.8234 - F1: 0.8234 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| | 3.7961 | 1.0 | 720 | 3.1657 | 0.3404 | 0.3404 | | 3.1859 | 2.0 | 1440 | 2.4835 | 0.4343 | 0.4343 | | 2.3104 | 3.0 | 2160 | 2.0474 | 0.5652 | 0.5652 | | 2.0071 | 4.0 | 2880 | 1.7190 | 0.6503 | 0.6503 | | 1.5595 | 5.0 | 3600 | 1.4873 | 0.6990 | 0.6990 | | 1.3664 | 6.0 | 4320 | 1.3088 | 0.7354 | 0.7354 | | 1.1272 | 7.0 | 5040 | 1.1964 | 0.7521 | 0.7521 | | 1.0128 | 8.0 | 5760 | 1.1115 | 0.7718 | 0.7718 | | 0.9405 | 9.0 | 6480 | 1.0598 | 0.7841 | 0.7841 | | 0.7758 | 10.0 | 7200 | 1.0003 | 0.7944 | 0.7944 | | 0.7457 | 11.0 | 7920 | 0.9599 | 0.8037 | 0.8037 | | 0.6605 | 12.0 | 8640 | 0.9175 | 0.8165 | 0.8165 | | 0.6135 | 13.0 | 9360 | 0.9148 | 0.8190 | 0.8190 | | 0.5698 | 14.0 | 10080 | 0.8976 | 0.8229 | 0.8229 | | 0.5578 | 15.0 | 10800 | 0.8941 | 0.8234 | 0.8234 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.0+cu116 - Datasets 2.7.1 - Tokenizers 0.13.2