--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: carl-distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.81 --- # carl-distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.7695 - Accuracy: 0.81 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.7944 | 1.0 | 113 | 1.7209 | 0.52 | | 1.2247 | 2.0 | 226 | 1.1857 | 0.75 | | 1.0477 | 3.0 | 339 | 0.9697 | 0.74 | | 0.7418 | 4.0 | 452 | 0.8605 | 0.78 | | 0.6595 | 5.0 | 565 | 0.7695 | 0.81 | ### Framework versions - Transformers 4.38.2 - Pytorch 1.12.1+cu116 - Datasets 2.4.0 - Tokenizers 0.15.2