--- datasets: - cardiffnlp/tweet_sentiment_multilingual metrics: - f1 - accuracy pipeline_tag: text-classification widget: - text: Get the all-analog Classic Vinyl Edition of "Takin Off" Album from {@herbiehancock@} via {@bluenoterecords@} link below {{URL}} example_title: topic_classification 1 - text: Yes, including Medicare and social security saving👍 example_title: sentiment 1 - text: All two of them taste like ass. example_title: offensive 1 - text: If you wanna look like a badass, have drama on social media example_title: irony 1 - text: Whoever just unfollowed me you a bitch example_title: hate 1 - text: I love swimming for the same reason I love meditating...the feeling of weightlessness. example_title: emotion 1 - text: Beautiful sunset last night from the pontoon @TupperLakeNY example_title: emoji 1 base_model: bert-base-multilingual-cased model-index: - name: cardiffnlp/bert-base-multilingual-cased-sentiment-multilingual results: - task: type: text-classification name: Text Classification dataset: name: cardiffnlp/tweet_sentiment_multilingual type: all split: test metrics: - type: micro_f1_cardiffnlp/tweet_sentiment_multilingual/all value: 0.6169540229885058 name: Micro F1 (cardiffnlp/tweet_sentiment_multilingual/all) - type: micro_f1_cardiffnlp/tweet_sentiment_multilingual/all value: 0.6168385894019698 name: Macro F1 (cardiffnlp/tweet_sentiment_multilingual/all) - type: accuracy_cardiffnlp/tweet_sentiment_multilingual/all value: 0.6169540229885058 name: Accuracy (cardiffnlp/tweet_sentiment_multilingual/all) --- # cardiffnlp/bert-base-multilingual-cased-sentiment-multilingual This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on the [`cardiffnlp/tweet_sentiment_multilingual (all)`](https://huggingface.co/datasets/cardiffnlp/tweet_sentiment_multilingual) via [`tweetnlp`](https://github.com/cardiffnlp/tweetnlp). Training split is `train` and parameters have been tuned on the validation split `validation`. Following metrics are achieved on the test split `test` ([link](https://huggingface.co/cardiffnlp/bert-base-multilingual-cased-sentiment-multilingual/raw/main/metric.json)). - F1 (micro): 0.6169540229885058 - F1 (macro): 0.6168385894019698 - Accuracy: 0.6169540229885058 ### Usage Install tweetnlp via pip. ```shell pip install tweetnlp ``` Load the model in python. ```python import tweetnlp model = tweetnlp.Classifier("cardiffnlp/bert-base-multilingual-cased-sentiment-multilingual", max_length=128) model.predict('Get the all-analog Classic Vinyl Edition of "Takin Off" Album from {@herbiehancock@} via {@bluenoterecords@} link below {{URL}}') ``` ### Reference ``` @inproceedings{dimosthenis-etal-2022-twitter, title = "{T}witter {T}opic {C}lassification", author = "Antypas, Dimosthenis and Ushio, Asahi and Camacho-Collados, Jose and Neves, Leonardo and Silva, Vitor and Barbieri, Francesco", booktitle = "Proceedings of the 29th International Conference on Computational Linguistics", month = oct, year = "2022", address = "Gyeongju, Republic of Korea", publisher = "International Committee on Computational Linguistics" } ```