--- library_name: transformers language: - vi license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Small vn - pbl4 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: vi split: None args: 'config: vi, split: test' metrics: - name: Wer type: wer value: 27.821033008005262 --- # Whisper Small vn - pbl4 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.7314 - Wer: 27.8210 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.0252 | 5.7471 | 1000 | 0.6066 | 28.1171 | | 0.0006 | 11.4943 | 2000 | 0.6882 | 27.6017 | | 0.0003 | 17.2414 | 3000 | 0.7211 | 27.9088 | | 0.0002 | 22.9885 | 4000 | 0.7314 | 27.8210 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.4.0 - Datasets 3.2.0 - Tokenizers 0.21.0