--- tags: - image-classification - timm - MobileNetV4 license: apache-2.0 datasets: - imagenet-1k pipeline_tag: image-classification --- # Model card for MobileNetV4_Conv_Blur_Medium_TFLite_224 A MobileNet-V4 image classification model. Trained on ImageNet-1k by Ross Wightman. Converted to TFLite Float32 & Float16 formats by Youssef Boulaouane. _**Note from original pytorch model:** This is a customization with blur pooling for downsample convs after the stem._ ## Model Details - **Pytorch Weights:** https://huggingface.co/timm/mobilenetv4_conv_blur_medium.e500_r224_in1k - **Model Type:** Image classification - **Model Stats:** - Params (M): 9.7 - GMACs: 1.2 - Activations (M): 8.6 - Input Shape (1, 224, 224, 3) - **Dataset:** ImageNet-1k - **Papers:** - MobileNetV4 -- Universal Models for the Mobile Ecosystem: https://arxiv.org/abs/2404.10518 - PyTorch Image Models: https://github.com/huggingface/pytorch-image-models - **Original:** https://github.com/tensorflow/models/tree/master/official/vision ## Model Usage ### Image Classification in Python ```python import numpy as np import tensorflow as tf from PIL import Image # Load label file with open('imagenet_classes.txt', 'r') as file: lines = file.readlines() index_to_label = {index: line.strip() for index, line in enumerate(lines)} # Initialize interpreter and IO details tfl_model = tf.lite.Interpreter(model_path=tf_model_path) tfl_model.allocate_tensors() input_details = tfl_model.get_input_details() output_details = tfl_model.get_output_details() # Load and preprocess the image image = Image.open(image_path).resize((224, 224), Image.BICUBIC) image = np.array(image, dtype=np.float32) mean = np.array([0.485, 0.456, 0.406], dtype=np.float32) std = np.array([0.229, 0.224, 0.225], dtype=np.float32) image = (image / 255.0 - mean) / std image = np.expand_dims(image, axis=-1) image = np.rollaxis(image, 3) # Inference and postprocessing input = input_details[0] tfl_model.set_tensor(input["index"], image) tfl_model.invoke() tfl_output = tfl_model.get_tensor(output_details[0]["index"]) tfl_output_tensor = tf.convert_to_tensor(tfl_output) tfl_softmax_output = tf.nn.softmax(tfl_output_tensor, axis=1) tfl_top5_probs, tfl_top5_indices = tf.math.top_k(tfl_softmax_output, k=5) # Get the top5 class labels and probabilities tfl_probs_list = tfl_top5_probs[0].numpy().tolist() tfl_index_list = tfl_top5_indices[0].numpy().tolist() for index, prob in zip(tfl_index_list, tfl_probs_list): print(f"{index_to_label[index]}: {round(prob*100, 2)}%") ``` ### Deployment on Mobile Refer to guides available here: https://ai.google.dev/edge/lite/inference ## Citation ```bibtex @article{qin2024mobilenetv4, title={MobileNetV4-Universal Models for the Mobile Ecosystem}, author={Qin, Danfeng and Leichner, Chas and Delakis, Manolis and Fornoni, Marco and Luo, Shixin and Yang, Fan and Wang, Weijun and Banbury, Colby and Ye, Chengxi and Akin, Berkin and others}, journal={arXiv preprint arXiv:2404.10518}, year={2024} } ``` ```bibtex @misc{rw2019timm, author = {Ross Wightman}, title = {PyTorch Image Models}, year = {2019}, publisher = {GitHub}, journal = {GitHub repository}, doi = {10.5281/zenodo.4414861}, howpublished = {\url{https://github.com/huggingface/pytorch-image-models}} } ```