--- metrics: - perplexity pipeline_tag: fill-mask library_name: transformers base_model: - Jihuai/bert-ancient-chinese --- Use the model ```python from transformers import BertTokenizer, BertForMaskedLM import torch # Load the tokenizer tokenizer = BertTokenizer.from_pretrained('btqkhai/SinoNomBERT') # Load the model model = BertForMaskedLM.from_pretrained('btqkhai/SinoNomBERT') text = '大 [MASK] 百 官 其 𢮿 花 供 饌 皆 用 新 禮' inputs = tokenizer(text, return_tensors="pt") mask_token_index = torch.where(inputs["input_ids"] == tokenizer.mask_token_id)[1] # Ground Truth: 宴 logits = model(**inputs).logits mask_token_logits = logits[0, mask_token_index, :] print("Predicted word:", tokenizer.decode(mask_token_logits[0].argmax())) ```