brewmeakay
commited on
Commit
·
23ac42c
1
Parent(s):
74680c5
Test Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 248.43 +/- 12.61
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f23b6081000>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f23b6081090>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f23b6081120>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f23b60811b0>", "_build": "<function ActorCriticPolicy._build at 0x7f23b6081240>", "forward": "<function ActorCriticPolicy.forward at 0x7f23b60812d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f23b6081360>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f23b60813f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f23b6081480>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f23b6081510>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f23b60815a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f23b6081630>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f23b6072100>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685976934075626075, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAK3XRz7gGkg/uawVveLmnr5vs9o8yoO5vAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBajjvNNaiMAWyUTZUBjAF0lEdAo3/pVGTcI3V9lChoBkdAbrhuCPIXCWgHTSUCaAhHQKOCJSvTw2F1fZQoaAZHQG6zZ1mrbQFoB00TAmgIR0CjhQZqVQhwdX2UKGgGR0BvecE7nxJ/aAdNzwFoCEdAo4atjgAIY3V9lChoBkdAcQpAY51eSmgHTYQBaAhHQKOIpBIFvAJ1fZQoaAZHQGpQ4YrJ8v5oB03DAWgIR0Cjit7ItDlYdX2UKGgGR0BxZvDk2gnMaAdNJwJoCEdAo48bKcNH6XV9lChoBkdAbnH++dsi0WgHTWkBaAhHQKORIqI7/4t1fZQoaAZHQG7Xfcer+5xoB025AWgIR0CjlAUCA+Y/dX2UKGgGR8BAezwMH8jzaAdNWQFoCEdAo5VdkFwDNnV9lChoBkdAbw5U5MlC1WgHTW8BaAhHQKOW01zhgmZ1fZQoaAZHQG+qNl7MPjJoB01TAWgIR0CjmKAhbGFSdX2UKGgGR0BZaf+OwPiDaAdN6ANoCEdAo52EB2fTTnV9lChoBkdAcD2zGgi/wmgHTYQBaAhHQKOfAIa99MN1fZQoaAZHQG435Oi35N5oB01kAWgIR0CjoFxfnfVJdX2UKGgGR0BxMIegctGvaAdNmAFoCEdAo6Jt9nbqQnV9lChoBkdAarss6JZW72gHTZoBaAhHQKOkGLvTgEV1fZQoaAZHQG7t7m+0w8JoB01UAWgIR0CjpWSDyvs7dX2UKGgGR0Bug3NmlImPaAdNSwFoCEdAo6c47eVLSXV9lChoBkdAcMJIKtxMnWgHTUEBaAhHQKOovbs4T9N1fZQoaAZHQHDiBjriVB5oB02SAWgIR0Cjqr8F6iTMdX2UKGgGR0Bw8s3Lmp2maAdNqgFoCEdAo63RvUBnz3V9lChoBkdAb8rPRiPQwGgHTZkBaAhHQKOwS5nUUfx1fZQoaAZHQHHQAggX/HZoB02vAWgIR0CjsnAydnTRdX2UKGgGR0BwpU2jwhGIaAdNoAFoCEdAo7QRUgjhUHV9lChoBkdAcc+pqynk1mgHTYYBaAhHQKO1eSfUWmB1fZQoaAZHQG4UAzpHI6toB01oAWgIR0Cjt22J79hrdX2UKGgGR0BswWKl54W2aAdNXAFoCEdAo7i4PoV2zXV9lChoBkdAcLK/4qPOp2gHTVwBaAhHQKO6ievpyIZ1fZQoaAZHQG44PicXm/5oB02hAmgIR0CjvZvO6d1/dX2UKGgGR0Bumc4aP0ZnaAdNYgFoCEdAo7921WsBAHV9lChoBkdAcMHdXDFZPmgHTVgBaAhHQKPAz8wYced1fZQoaAZHQG9KsqjJuEVoB01fAWgIR0Cjwh14oqkNdX2UKGgGR0Bw4GuDBdleaAdNXwFoCEdAo8P06JZW73V9lChoBkdAbrXeKsMiKWgHTZoBaAhHQKPF9sUqQRx1fZQoaAZHQHD8nYlIEr5oB02KAWgIR0Cjx+62F36idX2UKGgGR0BtkuS6lLvkaAdNawFoCEdAo8rutU4rBnV9lChoBkdAb/W3CsOoYWgHTaQBaAhHQKPNT6AvtdB1fZQoaAZHQG9lU1hsqKBoB01GAWgIR0Cjzp/h/Aj6dX2UKGgGR0BuP0VFhG6PaAdNcQFoCEdAo9CMSZjQRnV9lChoBkdAbzlT2nKnvWgHTVkBaAhHQKPR1jPv8ZV1fZQoaAZHQGyYQRPGhmJoB02WAWgIR0Cj02cL0BfbdX2UKGgGR0BxkBXyRSxaaAdNwAFoCEdAo9WrpA2Q4nV9lChoBkdAb1J/uLJjlWgHTTYBaAhHQKPWyA7xNIt1fZQoaAZHQHDb2Vu76HloB01HAWgIR0Cj2IIrWiDedX2UKGgGR0BwD0oVmBe5aAdNYwFoCEdAo9nEg4ffXXV9lChoBkdAb7IG+K0laGgHTVcBaAhHQKPbBz/ZM+N1fZQoaAZHQHINeEIw/PhoB01dAWgIR0Cj3NwXyiEhdX2UKGgGR0Bxr0VQAMlUaAdNZwFoCEdAo94vhbW3B3V9lChoBkdAcXA4qwyIpGgHTZIBaAhHQKPfrGIbfgt1fZQoaAZHQHBCUlNUOutoB01MAWgIR0Cj4WOjRD1HdX2UKGgGR0BsbQ1UEPlNaAdNbAFoCEdAo+Mcnw5NoXV9lChoBkdAck6MqBmPHWgHTXQBaAhHQKPk+XvYvnN1fZQoaAZHQHGW+mrKeTVoB02UAWgIR0Cj5+t2s7uEdX2UKGgGR0Bu/TYmLLpzaAdNcwFoCEdAo+nytPpIMHV9lChoBkdAcK/sKb8WK2gHTXUBaAhHQKPrsx9G7SR1fZQoaAZHQG9pV/Ue+25oB012AWgIR0Cj7ZT0g8r7dX2UKGgGR0BwdhilSCOFaAdNswFoCEdAo+9PTd+G5HV9lChoBkdAUDJLpRoAXGgHTS8BaAhHQKPw56sQumJ1fZQoaAZHQHBJg5zYEntoB01mAWgIR0Cj8j4AsCkodX2UKGgGR0Bw2qQPqcEvaAdNXgFoCEdAo/OStHQQc3V9lChoBkdAb4WeeWfK6mgHTYwBaAhHQKP1q+lj3Eh1fZQoaAZHQGpim5+YtxxoB01hAWgIR0Cj9vuwgTysdX2UKGgGR0BqdTJuEVWTaAdNbAFoCEdAo/hygVXV9XV9lChoBkdAaR/60pmVaGgHTYUBaAhHQKP6kNR3u/l1fZQoaAZHQHD6TTa0x/NoB00nAWgIR0Cj+5Wf9P1tdX2UKGgGR0Bvzeq94/u9aAdNdQFoCEdAo/zz9VFQVXV9lChoBkdAcLU4SHuZ1GgHTXwBaAhHQKP+2qCHymR1fZQoaAZHQGqPUtyxRl9oB01QAWgIR0CkAIa8Hv+gdX2UKGgGR0BsHhR/EwWWaAdNaAFoCEdApAJD5bhWHXV9lChoBkdAcT+l+Vkc0mgHTZ8BaAhHQKQFVXyRSxZ1fZQoaAZHQHD8cDfWMCNoB013AWgIR0CkB5s6aLGadX2UKGgGR0Btt5cJMQEqaAdNiAFoCEdApAoWCXhOxnV9lChoBkdAcNyACW/rSmgHTYUBaAhHQKQLjLRrrPd1fZQoaAZHQGvwTuWrwORoB01iAWgIR0CkDO8BdUsGdX2UKGgGR0BvECFsYVIqaAdNWwFoCEdApA7mq94/vHV9lChoBkdAcSDwY+B6KWgHTTcBaAhHQKQQCV5a/yp1fZQoaAZHQHDSQiiZfD1oB010AWgIR0CkEXAg5imVdX2UKGgGR0BrsVxAB1cMaAdNYgFoCEdApBNZVdX1anV9lChoBkdAcZnX2dupCWgHTW4BaAhHQKQUoJPZZjh1fZQoaAZHQGuBgsCkoF5oB02FAWgIR0CkFiO6unuRdX2UKGgGR0BsYtLnLaEjaAdNaAFoCEdApBgWZuyeI3V9lChoBkdAcJrydWhh6WgHTVwBaAhHQKQZYwTM7lt1fZQoaAZHQHFAYpH7P6doB01uAWgIR0CkGrZnlGPQdX2UKGgGR0BxUenjyWiUaAdNYQFoCEdApBySaAnUlXV9lChoBkdAbGK5OJtSAGgHTUoBaAhHQKQeWNcW0qp1fZQoaAZHQHCHBISUTtdoB01lAWgIR0CkIAmlQ/HHdX2UKGgGR0BtQuhXbM5faAdNhQFoCEdApCMkibDuSnV9lChoBkdAbGqU34sVcmgHTWgBaAhHQKQlEM7U5Ml1fZQoaAZHQHArGCVbA1xoB00+AWgIR0CkJwpswco6dX2UKGgGR0Bey0OVgQYlaAdN6ANoCEdApCskSmIj4nV9lChoBke/+rVtoBaLXWgHS95oCEdApCxqI7/4qXV9lChoBkdAbdJXd0q6OGgHTVoBaAhHQKQttPTG5tp1fZQoaAZHQHBNZbUwztVoB018AWgIR0CkLxub7TDwdX2UKGgGR0BwPPmuDBdlaAdNZAFoCEdApDEPTodMkHV9lChoBkdAa5F05EMLGGgHTU4BaAhHQKQyP6uW8h91fZQoaAZHQGywJ9ZzPrxoB01tAWgIR0CkM6k+PikwdX2UKGgGR0BsbZxo7FKkaAdNSgFoCEdApDVtTBInSnV9lChoBkdAcaKDOkcjq2gHTU0BaAhHQKQ2nubZvk11fZQoaAZHQHDv8zAN5MVoB008AWgIR0CkN92Kl54XdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8751334fa0511163067849e55ee4a409b6d239580d54f0e2b4007ae8a3caebb4
|
3 |
+
size 146097
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f23b6081000>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f23b6081090>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f23b6081120>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f23b60811b0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f23b6081240>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f23b60812d0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f23b6081360>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f23b60813f0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f23b6081480>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f23b6081510>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f23b60815a0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f23b6081630>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f23b6072100>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1000448,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1685976934075626075,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAK3XRz7gGkg/uawVveLmnr5vs9o8yoO5vAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.00044800000000000395,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBajjvNNaiMAWyUTZUBjAF0lEdAo3/pVGTcI3V9lChoBkdAbrhuCPIXCWgHTSUCaAhHQKOCJSvTw2F1fZQoaAZHQG6zZ1mrbQFoB00TAmgIR0CjhQZqVQhwdX2UKGgGR0BvecE7nxJ/aAdNzwFoCEdAo4atjgAIY3V9lChoBkdAcQpAY51eSmgHTYQBaAhHQKOIpBIFvAJ1fZQoaAZHQGpQ4YrJ8v5oB03DAWgIR0Cjit7ItDlYdX2UKGgGR0BxZvDk2gnMaAdNJwJoCEdAo48bKcNH6XV9lChoBkdAbnH++dsi0WgHTWkBaAhHQKORIqI7/4t1fZQoaAZHQG7Xfcer+5xoB025AWgIR0CjlAUCA+Y/dX2UKGgGR8BAezwMH8jzaAdNWQFoCEdAo5VdkFwDNnV9lChoBkdAbw5U5MlC1WgHTW8BaAhHQKOW01zhgmZ1fZQoaAZHQG+qNl7MPjJoB01TAWgIR0CjmKAhbGFSdX2UKGgGR0BZaf+OwPiDaAdN6ANoCEdAo52EB2fTTnV9lChoBkdAcD2zGgi/wmgHTYQBaAhHQKOfAIa99MN1fZQoaAZHQG435Oi35N5oB01kAWgIR0CjoFxfnfVJdX2UKGgGR0BxMIegctGvaAdNmAFoCEdAo6Jt9nbqQnV9lChoBkdAarss6JZW72gHTZoBaAhHQKOkGLvTgEV1fZQoaAZHQG7t7m+0w8JoB01UAWgIR0CjpWSDyvs7dX2UKGgGR0Bug3NmlImPaAdNSwFoCEdAo6c47eVLSXV9lChoBkdAcMJIKtxMnWgHTUEBaAhHQKOovbs4T9N1fZQoaAZHQHDiBjriVB5oB02SAWgIR0Cjqr8F6iTMdX2UKGgGR0Bw8s3Lmp2maAdNqgFoCEdAo63RvUBnz3V9lChoBkdAb8rPRiPQwGgHTZkBaAhHQKOwS5nUUfx1fZQoaAZHQHHQAggX/HZoB02vAWgIR0CjsnAydnTRdX2UKGgGR0BwpU2jwhGIaAdNoAFoCEdAo7QRUgjhUHV9lChoBkdAcc+pqynk1mgHTYYBaAhHQKO1eSfUWmB1fZQoaAZHQG4UAzpHI6toB01oAWgIR0Cjt22J79hrdX2UKGgGR0BswWKl54W2aAdNXAFoCEdAo7i4PoV2zXV9lChoBkdAcLK/4qPOp2gHTVwBaAhHQKO6ievpyIZ1fZQoaAZHQG44PicXm/5oB02hAmgIR0CjvZvO6d1/dX2UKGgGR0Bumc4aP0ZnaAdNYgFoCEdAo7921WsBAHV9lChoBkdAcMHdXDFZPmgHTVgBaAhHQKPAz8wYced1fZQoaAZHQG9KsqjJuEVoB01fAWgIR0Cjwh14oqkNdX2UKGgGR0Bw4GuDBdleaAdNXwFoCEdAo8P06JZW73V9lChoBkdAbrXeKsMiKWgHTZoBaAhHQKPF9sUqQRx1fZQoaAZHQHD8nYlIEr5oB02KAWgIR0Cjx+62F36idX2UKGgGR0BtkuS6lLvkaAdNawFoCEdAo8rutU4rBnV9lChoBkdAb/W3CsOoYWgHTaQBaAhHQKPNT6AvtdB1fZQoaAZHQG9lU1hsqKBoB01GAWgIR0Cjzp/h/Aj6dX2UKGgGR0BuP0VFhG6PaAdNcQFoCEdAo9CMSZjQRnV9lChoBkdAbzlT2nKnvWgHTVkBaAhHQKPR1jPv8ZV1fZQoaAZHQGyYQRPGhmJoB02WAWgIR0Cj02cL0BfbdX2UKGgGR0BxkBXyRSxaaAdNwAFoCEdAo9WrpA2Q4nV9lChoBkdAb1J/uLJjlWgHTTYBaAhHQKPWyA7xNIt1fZQoaAZHQHDb2Vu76HloB01HAWgIR0Cj2IIrWiDedX2UKGgGR0BwD0oVmBe5aAdNYwFoCEdAo9nEg4ffXXV9lChoBkdAb7IG+K0laGgHTVcBaAhHQKPbBz/ZM+N1fZQoaAZHQHINeEIw/PhoB01dAWgIR0Cj3NwXyiEhdX2UKGgGR0Bxr0VQAMlUaAdNZwFoCEdAo94vhbW3B3V9lChoBkdAcXA4qwyIpGgHTZIBaAhHQKPfrGIbfgt1fZQoaAZHQHBCUlNUOutoB01MAWgIR0Cj4WOjRD1HdX2UKGgGR0BsbQ1UEPlNaAdNbAFoCEdAo+Mcnw5NoXV9lChoBkdAck6MqBmPHWgHTXQBaAhHQKPk+XvYvnN1fZQoaAZHQHGW+mrKeTVoB02UAWgIR0Cj5+t2s7uEdX2UKGgGR0Bu/TYmLLpzaAdNcwFoCEdAo+nytPpIMHV9lChoBkdAcK/sKb8WK2gHTXUBaAhHQKPrsx9G7SR1fZQoaAZHQG9pV/Ue+25oB012AWgIR0Cj7ZT0g8r7dX2UKGgGR0BwdhilSCOFaAdNswFoCEdAo+9PTd+G5HV9lChoBkdAUDJLpRoAXGgHTS8BaAhHQKPw56sQumJ1fZQoaAZHQHBJg5zYEntoB01mAWgIR0Cj8j4AsCkodX2UKGgGR0Bw2qQPqcEvaAdNXgFoCEdAo/OStHQQc3V9lChoBkdAb4WeeWfK6mgHTYwBaAhHQKP1q+lj3Eh1fZQoaAZHQGpim5+YtxxoB01hAWgIR0Cj9vuwgTysdX2UKGgGR0BqdTJuEVWTaAdNbAFoCEdAo/hygVXV9XV9lChoBkdAaR/60pmVaGgHTYUBaAhHQKP6kNR3u/l1fZQoaAZHQHD6TTa0x/NoB00nAWgIR0Cj+5Wf9P1tdX2UKGgGR0Bvzeq94/u9aAdNdQFoCEdAo/zz9VFQVXV9lChoBkdAcLU4SHuZ1GgHTXwBaAhHQKP+2qCHymR1fZQoaAZHQGqPUtyxRl9oB01QAWgIR0CkAIa8Hv+gdX2UKGgGR0BsHhR/EwWWaAdNaAFoCEdApAJD5bhWHXV9lChoBkdAcT+l+Vkc0mgHTZ8BaAhHQKQFVXyRSxZ1fZQoaAZHQHD8cDfWMCNoB013AWgIR0CkB5s6aLGadX2UKGgGR0Btt5cJMQEqaAdNiAFoCEdApAoWCXhOxnV9lChoBkdAcNyACW/rSmgHTYUBaAhHQKQLjLRrrPd1fZQoaAZHQGvwTuWrwORoB01iAWgIR0CkDO8BdUsGdX2UKGgGR0BvECFsYVIqaAdNWwFoCEdApA7mq94/vHV9lChoBkdAcSDwY+B6KWgHTTcBaAhHQKQQCV5a/yp1fZQoaAZHQHDSQiiZfD1oB010AWgIR0CkEXAg5imVdX2UKGgGR0BrsVxAB1cMaAdNYgFoCEdApBNZVdX1anV9lChoBkdAcZnX2dupCWgHTW4BaAhHQKQUoJPZZjh1fZQoaAZHQGuBgsCkoF5oB02FAWgIR0CkFiO6unuRdX2UKGgGR0BsYtLnLaEjaAdNaAFoCEdApBgWZuyeI3V9lChoBkdAcJrydWhh6WgHTVwBaAhHQKQZYwTM7lt1fZQoaAZHQHFAYpH7P6doB01uAWgIR0CkGrZnlGPQdX2UKGgGR0BxUenjyWiUaAdNYQFoCEdApBySaAnUlXV9lChoBkdAbGK5OJtSAGgHTUoBaAhHQKQeWNcW0qp1fZQoaAZHQHCHBISUTtdoB01lAWgIR0CkIAmlQ/HHdX2UKGgGR0BtQuhXbM5faAdNhQFoCEdApCMkibDuSnV9lChoBkdAbGqU34sVcmgHTWgBaAhHQKQlEM7U5Ml1fZQoaAZHQHArGCVbA1xoB00+AWgIR0CkJwpswco6dX2UKGgGR0Bey0OVgQYlaAdN6ANoCEdApCskSmIj4nV9lChoBke/+rVtoBaLXWgHS95oCEdApCxqI7/4qXV9lChoBkdAbdJXd0q6OGgHTVoBaAhHQKQttPTG5tp1fZQoaAZHQHBNZbUwztVoB018AWgIR0CkLxub7TDwdX2UKGgGR0BwPPmuDBdlaAdNZAFoCEdApDEPTodMkHV9lChoBkdAa5F05EMLGGgHTU4BaAhHQKQyP6uW8h91fZQoaAZHQGywJ9ZzPrxoB01tAWgIR0CkM6k+PikwdX2UKGgGR0BsbZxo7FKkaAdNSgFoCEdApDVtTBInSnV9lChoBkdAcaKDOkcjq2gHTU0BaAhHQKQ2nubZvk11fZQoaAZHQHDv8zAN5MVoB008AWgIR0CkN92Kl54XdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 3908,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 1,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:660256e2ddfa0030794431e9cf44ee0d43b3ef3c1f13adb9f499dfc6291a7ceb
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:291cba022bd44b42acc4820076a96171b67b1433132ee1096a503e90ccd5f510
|
3 |
+
size 43329
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.11
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (201 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 248.43006150000002, "std_reward": 12.608921460912502, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-05T15:40:05.479552"}
|