--- tags: - latex-ocr - math-ocr - math-formula-recognition - mfr - pix2text - image-to-text license: mit library_name: transformers --- # Model Card: Pix2Text-MFR Math Formula Recognition (MFR) model from [Pix2Text (P2T)](). ## Model Details / 模型细节 This model is fine-tuned on a coin dataset using **contrastive learning** techniques, based on OpenAI's CLIP (ViT-B/32). It aims to enhance the feature extraction capabilities for **Coin** images, thus achieving more accurate image-based search functionalities. The model combines the powerful features of the Vision Transformer (ViT) with the multimodal learning capabilities of CLIP, specifically optimized for coin imagery. 这个模型是在 OpenAI 的 CLIP (ViT-B/32) 基础上,利用对比学习技术并使用硬币数据集进行微调得到的。它旨在提高硬币图像的特征提取能力,从而实现更准确的以图搜图功能。该模型结合了视觉变换器(ViT)的强大功能和 CLIP 的多模态学习能力,专门针对硬币图像进行了优化。 ## Usage and Limitations / 使用和限制 - **Usage**: This model is primarily used for extracting representation vectors from coin images, enabling efficient and precise image-based searches in a coin image database. - **Limitations**: As the model is trained specifically on coin images, it may not perform well on non-coin images. - **用途**:此模型主要用于提取硬币图片的表示向量,以实现在硬币图像库中进行高效、精确的以图搜图。 - **限制**:由于模型是针对硬币图像进行训练的,因此在处理非硬币图像时可能效果不佳。 ## Documents / 文档 - Base Model: [openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) ## Model Use / 模型使用 ```python3 from PIL import Image import requests from transformers import CLIPProcessor, CLIPModel model = CLIPModel.from_pretrained("breezedeus/coin-clip-vit-base-patch32") processor = CLIPProcessor.from_pretrained("breezedeus/coin-clip-vit-base-patch32") image_fp = "path/to/coin_image.jpg" image = Image.open(image_fp).convert("RGB") inputs = processor(images=image, return_tensors="pt") img_features = model.get_image_features(**inputs) img_features = F.normalize(img_features, dim=1) ``` ## Training Data / 训练数据 The model was trained on a specialized coin image dataset. This dataset includes images of various currencies' coins. 本模型使用的是专门的硬币图像数据集进行训练。这个数据集包含了多种货币的硬币图片。 ## Training Process / 训练过程 The model was fine-tuned on the OpenAI CLIP (ViT-B/32) pretrained model using a coin image dataset. The training process involved Contrastive Learning fine-tuning techniques and parameter settings. 模型是在 OpenAI 的 CLIP (ViT-B/32) 预训练模型的基础上,使用硬币图像数据集进行微调。训练过程采用了对比学习的微调技巧和参数设置。 ## Performance / 性能 This model demonstrates excellent performance in coin image retrieval tasks. 该模型在硬币图像检索任务上展现了优异的性能。 ## Feedback / 反馈 > Where to send questions or comments about the model. Welcome to contact the author [Breezedeus](https://www.breezedeus.com/join-group). 欢迎联系作者 [Breezedeus](https://www.breezedeus.com/join-group) 。