GGUF
Inference Endpoints
brayniac commited on
Commit
a9a2e7d
·
0 Parent(s):

initial commit

Browse files
.gitattributes ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tar filter=lfs diff=lfs merge=lfs -text
29
+ *.tflite filter=lfs diff=lfs merge=lfs -text
30
+ *.tgz filter=lfs diff=lfs merge=lfs -text
31
+ *.wasm filter=lfs diff=lfs merge=lfs -text
32
+ *.xz filter=lfs diff=lfs merge=lfs -text
33
+ *.zip filter=lfs diff=lfs merge=lfs -text
34
+ *.zst filter=lfs diff=lfs merge=lfs -text
35
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ *.gguf filter=lfs diff=lfs merge=lfs -text
LICENSE.txt ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ Apache License
3
+ Version 2.0, January 2004
4
+ http://www.apache.org/licenses/
5
+
6
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
7
+
8
+ 1. Definitions.
9
+
10
+ "License" shall mean the terms and conditions for use, reproduction,
11
+ and distribution as defined by Sections 1 through 9 of this document.
12
+
13
+ "Licensor" shall mean the copyright owner or entity authorized by
14
+ the copyright owner that is granting the License.
15
+
16
+ "Legal Entity" shall mean the union of the acting entity and all
17
+ other entities that control, are controlled by, or are under common
18
+ control with that entity. For the purposes of this definition,
19
+ "control" means (i) the power, direct or indirect, to cause the
20
+ direction or management of such entity, whether by contract or
21
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
22
+ outstanding shares, or (iii) beneficial ownership of such entity.
23
+
24
+ "You" (or "Your") shall mean an individual or Legal Entity
25
+ exercising permissions granted by this License.
26
+
27
+ "Source" form shall mean the preferred form for making modifications,
28
+ including but not limited to software source code, documentation
29
+ source, and configuration files.
30
+
31
+ "Object" form shall mean any form resulting from mechanical
32
+ transformation or translation of a Source form, including but
33
+ not limited to compiled object code, generated documentation,
34
+ and conversions to other media types.
35
+
36
+ "Work" shall mean the work of authorship, whether in Source or
37
+ Object form, made available under the License, as indicated by a
38
+ copyright notice that is included in or attached to the work
39
+ (an example is provided in the Appendix below).
40
+
41
+ "Derivative Works" shall mean any work, whether in Source or Object
42
+ form, that is based on (or derived from) the Work and for which the
43
+ editorial revisions, annotations, elaborations, or other modifications
44
+ represent, as a whole, an original work of authorship. For the purposes
45
+ of this License, Derivative Works shall not include works that remain
46
+ separable from, or merely link (or bind by name) to the interfaces of,
47
+ the Work and Derivative Works thereof.
48
+
49
+ "Contribution" shall mean any work of authorship, including
50
+ the original version of the Work and any modifications or additions
51
+ to that Work or Derivative Works thereof, that is intentionally
52
+ submitted to Licensor for inclusion in the Work by the copyright owner
53
+ or by an individual or Legal Entity authorized to submit on behalf of
54
+ the copyright owner. For the purposes of this definition, "submitted"
55
+ means any form of electronic, verbal, or written communication sent
56
+ to the Licensor or its representatives, including but not limited to
57
+ communication on electronic mailing lists, source code control systems,
58
+ and issue tracking systems that are managed by, or on behalf of, the
59
+ Licensor for the purpose of discussing and improving the Work, but
60
+ excluding communication that is conspicuously marked or otherwise
61
+ designated in writing by the copyright owner as "Not a Contribution."
62
+
63
+ "Contributor" shall mean Licensor and any individual or Legal Entity
64
+ on behalf of whom a Contribution has been received by Licensor and
65
+ subsequently incorporated within the Work.
66
+
67
+ 2. Grant of Copyright License. Subject to the terms and conditions of
68
+ this License, each Contributor hereby grants to You a perpetual,
69
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
70
+ copyright license to reproduce, prepare Derivative Works of,
71
+ publicly display, publicly perform, sublicense, and distribute the
72
+ Work and such Derivative Works in Source or Object form.
73
+
74
+ 3. Grant of Patent License. Subject to the terms and conditions of
75
+ this License, each Contributor hereby grants to You a perpetual,
76
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
77
+ (except as stated in this section) patent license to make, have made,
78
+ use, offer to sell, sell, import, and otherwise transfer the Work,
79
+ where such license applies only to those patent claims licensable
80
+ by such Contributor that are necessarily infringed by their
81
+ Contribution(s) alone or by combination of their Contribution(s)
82
+ with the Work to which such Contribution(s) was submitted. If You
83
+ institute patent litigation against any entity (including a
84
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
85
+ or a Contribution incorporated within the Work constitutes direct
86
+ or contributory patent infringement, then any patent licenses
87
+ granted to You under this License for that Work shall terminate
88
+ as of the date such litigation is filed.
89
+
90
+ 4. Redistribution. You may reproduce and distribute copies of the
91
+ Work or Derivative Works thereof in any medium, with or without
92
+ modifications, and in Source or Object form, provided that You
93
+ meet the following conditions:
94
+
95
+ (a) You must give any other recipients of the Work or
96
+ Derivative Works a copy of this License; and
97
+
98
+ (b) You must cause any modified files to carry prominent notices
99
+ stating that You changed the files; and
100
+
101
+ (c) You must retain, in the Source form of any Derivative Works
102
+ that You distribute, all copyright, patent, trademark, and
103
+ attribution notices from the Source form of the Work,
104
+ excluding those notices that do not pertain to any part of
105
+ the Derivative Works; and
106
+
107
+ (d) If the Work includes a "NOTICE" text file as part of its
108
+ distribution, then any Derivative Works that You distribute must
109
+ include a readable copy of the attribution notices contained
110
+ within such NOTICE file, excluding those notices that do not
111
+ pertain to any part of the Derivative Works, in at least one
112
+ of the following places: within a NOTICE text file distributed
113
+ as part of the Derivative Works; within the Source form or
114
+ documentation, if provided along with the Derivative Works; or,
115
+ within a display generated by the Derivative Works, if and
116
+ wherever such third-party notices normally appear. The contents
117
+ of the NOTICE file are for informational purposes only and
118
+ do not modify the License. You may add Your own attribution
119
+ notices within Derivative Works that You distribute, alongside
120
+ or as an addendum to the NOTICE text from the Work, provided
121
+ that such additional attribution notices cannot be construed
122
+ as modifying the License.
123
+
124
+ You may add Your own copyright statement to Your modifications and
125
+ may provide additional or different license terms and conditions
126
+ for use, reproduction, or distribution of Your modifications, or
127
+ for any such Derivative Works as a whole, provided Your use,
128
+ reproduction, and distribution of the Work otherwise complies with
129
+ the conditions stated in this License.
130
+
131
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
132
+ any Contribution intentionally submitted for inclusion in the Work
133
+ by You to the Licensor shall be under the terms and conditions of
134
+ this License, without any additional terms or conditions.
135
+ Notwithstanding the above, nothing herein shall supersede or modify
136
+ the terms of any separate license agreement you may have executed
137
+ with Licensor regarding such Contributions.
138
+
139
+ 6. Trademarks. This License does not grant permission to use the trade
140
+ names, trademarks, service marks, or product names of the Licensor,
141
+ except as required for reasonable and customary use in describing the
142
+ origin of the Work and reproducing the content of the NOTICE file.
143
+
144
+ 7. Disclaimer of Warranty. Unless required by applicable law or
145
+ agreed to in writing, Licensor provides the Work (and each
146
+ Contributor provides its Contributions) on an "AS IS" BASIS,
147
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
148
+ implied, including, without limitation, any warranties or conditions
149
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
150
+ PARTICULAR PURPOSE. You are solely responsible for determining the
151
+ appropriateness of using or redistributing the Work and assume any
152
+ risks associated with Your exercise of permissions under this License.
153
+
154
+ 8. Limitation of Liability. In no event and under no legal theory,
155
+ whether in tort (including negligence), contract, or otherwise,
156
+ unless required by applicable law (such as deliberate and grossly
157
+ negligent acts) or agreed to in writing, shall any Contributor be
158
+ liable to You for damages, including any direct, indirect, special,
159
+ incidental, or consequential damages of any character arising as a
160
+ result of this License or out of the use or inability to use the
161
+ Work (including but not limited to damages for loss of goodwill,
162
+ work stoppage, computer failure or malfunction, or any and all
163
+ other commercial damages or losses), even if such Contributor
164
+ has been advised of the possibility of such damages.
165
+
166
+ 9. Accepting Warranty or Additional Liability. While redistributing
167
+ the Work or Derivative Works thereof, You may choose to offer,
168
+ and charge a fee for, acceptance of support, warranty, indemnity,
169
+ or other liability obligations and/or rights consistent with this
170
+ License. However, in accepting such obligations, You may act only
171
+ on Your own behalf and on Your sole responsibility, not on behalf
172
+ of any other Contributor, and only if You agree to indemnify,
173
+ defend, and hold each Contributor harmless for any liability
174
+ incurred by, or claims asserted against, such Contributor by reason
175
+ of your accepting any such warranty or additional liability.
176
+
177
+ END OF TERMS AND CONDITIONS
178
+
179
+ APPENDIX: How to apply the Apache License to your work.
180
+
181
+ To apply the Apache License to your work, attach the following
182
+ boilerplate notice, with the fields enclosed by brackets "[]"
183
+ replaced with your own identifying information. (Don't include
184
+ the brackets!) The text should be enclosed in the appropriate
185
+ comment syntax for the file format. We also recommend that a
186
+ file or class name and description of purpose be included on the
187
+ same "printed page" as the copyright notice for easier
188
+ identification within third-party archives.
189
+
190
+ Copyright [yyyy] [name of copyright owner]
191
+
192
+ Licensed under the Apache License, Version 2.0 (the "License");
193
+ you may not use this file except in compliance with the License.
194
+ You may obtain a copy of the License at
195
+
196
+ http://www.apache.org/licenses/LICENSE-2.0
197
+
198
+ Unless required by applicable law or agreed to in writing, software
199
+ distributed under the License is distributed on an "AS IS" BASIS,
200
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
201
+ See the License for the specific language governing permissions and
202
+ limitations under the License.
OpenLlama-7B-v2.Q2_K.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d400579320c2e96513009e22f51ee674ed738c3a4cf92c9de6de1ac9d82e709c
3
+ size 2825952608
OpenLlama-7B-v2.Q3_K_L.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a87e807314651baeb0beb8300f030499be5bc97e8526b0ee73b066c1c9d1ed31
3
+ size 3597122912
OpenLlama-7B-v2.Q3_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3dff911673086a8896a8a2022701d5417a3f6e0fd87ae7cf57def258c13d5f06
3
+ size 3298016608
OpenLlama-7B-v2.Q3_K_S.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:17c15414cf318cc7e1d826830ddccd3941a305eccdc3306e60dce70faabfe5cf
3
+ size 2948316512
OpenLlama-7B-v2.Q4_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ce0b5fcb0cc5cbdbc44b65e1ed5a6596e1ec57c6217d325f9cdac93103ddc7d
3
+ size 3825818976
OpenLlama-7B-v2.Q4_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:324db451b4c46f8ff8cb97d94eb0967caa67728f0a39f1977347eaa4d1b31083
3
+ size 4081016160
OpenLlama-7B-v2.Q4_K_S.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f3a29592d1d0105fc3f102bce456ffea09bda6cf29ecfaf03502bdfbad718015
3
+ size 3856751968
OpenLlama-7B-v2.Q5_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27aeab0fec8e5d8035b4e5bac16350a714baeb7a5654f7a302841f3d34b53484
3
+ size 4651703648
OpenLlama-7B-v2.Q5_K_M.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d2ec0335b991b80a2f9ed85f6b0bd1c8807b57ccc24761c3b2666c5cc8d51a16
3
+ size 4783168864
OpenLlama-7B-v2.Q5_K_S.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7220a135a53f78c20016d3c641a70da3c5c1773036a471a8385f48940d618a4a
3
+ size 4651703648
OpenLlama-7B-v2.Q6_K.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:49a28c1b939caf9c8cb9eef57a8b735b2af482fd9bd14e0fef985d4aa2a55cd1
3
+ size 5529206112
OpenLlama-7B-v2.Q8_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f9850b0ea8671b22cc4be30083914c22981c2082f0ef4ccc36f55b9114e30d7a
3
+ size 7161101664
OpenLlama-7B-v2.f16.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4f0f2ff6c348bd4d51a29624b48cd71074dc6beb2ec9aa14ebb43810eeb28e90
3
+ size 13323492704
README.md ADDED
@@ -0,0 +1,161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - tiiuae/falcon-refinedweb
5
+ - bigcode/starcoderdata
6
+ - togethercomputer/RedPajama-Data-1T
7
+ ---
8
+
9
+ # OpenLLaMA: An Open Reproduction of LLaMA
10
+
11
+ **TL;DR**: we are releasing our public preview of OpenLLaMA, a permissively licensed open source reproduction of Meta AI’s LLaMA. We are releasing a series of 3B, 7B and 13B models trained on different data mixtures. Our model weights can serve as the drop in replacement of LLaMA in existing implementations.
12
+
13
+ In this repo, we present a permissively licensed open source reproduction of Meta AI's [LLaMA](https://ai.facebook.com/blog/large-language-model-llama-meta-ai/) large language model. We are releasing a series of 3B, 7B and 13B models trained on 1T tokens. We provide PyTorch and JAX weights of pre-trained OpenLLaMA models, as well as evaluation results and comparison against the original LLaMA models. The v2 model is better than the old v1 model trained on a different data mixture. Please see the [project homepage of OpenLLaMA](https://github.com/openlm-research/open_llama) for more details.
14
+
15
+
16
+ ## Weights Release, License and Usage
17
+
18
+ We release the weights in two formats: an EasyLM format to be use with our [EasyLM framework](https://github.com/young-geng/EasyLM), and a PyTorch format to be used with the [Hugging Face transformers](https://huggingface.co/docs/transformers/index) library. Both our training framework EasyLM and the checkpoint weights are licensed permissively under the Apache 2.0 license.
19
+
20
+ ### Loading the Weights with Hugging Face Transformers
21
+ Preview checkpoints can be directly loaded from Hugging Face Hub. **Please note that it is advised to avoid using the Hugging Face fast tokenizer for now, as we’ve observed that** [**the auto-converted fast tokenizer sometimes gives incorrect tokenizations**](https://github.com/huggingface/transformers/issues/24233)**.** This can be achieved by directly using the `LlamaTokenizer` class, or passing in the `use_fast=False` option for the `AutoTokenizer` class. See the following example for usage.
22
+
23
+ ```python
24
+ import torch
25
+ from transformers import LlamaTokenizer, LlamaForCausalLM
26
+
27
+ ## v2 models
28
+ model_path = 'openlm-research/open_llama_3b_v2'
29
+ # model_path = 'openlm-research/open_llama_7b_v2'
30
+
31
+ ## v1 models
32
+ # model_path = 'openlm-research/open_llama_3b'
33
+ # model_path = 'openlm-research/open_llama_7b'
34
+ # model_path = 'openlm-research/open_llama_13b'
35
+
36
+ tokenizer = LlamaTokenizer.from_pretrained(model_path)
37
+ model = LlamaForCausalLM.from_pretrained(
38
+ model_path, torch_dtype=torch.float16, device_map='auto',
39
+ )
40
+
41
+ prompt = 'Q: What is the largest animal?\nA:'
42
+ input_ids = tokenizer(prompt, return_tensors="pt").input_ids
43
+
44
+ generation_output = model.generate(
45
+ input_ids=input_ids, max_new_tokens=32
46
+ )
47
+ print(tokenizer.decode(generation_output[0]))
48
+ ```
49
+
50
+ For more advanced usage, please follow the [transformers LLaMA documentation](https://huggingface.co/docs/transformers/main/model_doc/llama).
51
+
52
+ ### Evaluating with LM-Eval-Harness
53
+ The model can be evaluated with [lm-eval-harness](https://github.com/EleutherAI/lm-evaluation-harness). However, due to the aforementioned tokenizer issue, we need to avoid using the fast tokenizer to obtain the correct results. This can be achieved by passing in `use_fast=False` to [this part of lm-eval-harness](https://github.com/EleutherAI/lm-evaluation-harness/blob/4b701e228768052cfae9043dca13e82052ca5eea/lm_eval/models/huggingface.py#LL313C9-L316C10), as shown in the example below:
54
+
55
+ ```python
56
+ tokenizer = self.AUTO_TOKENIZER_CLASS.from_pretrained(
57
+ pretrained if tokenizer is None else tokenizer,
58
+ revision=revision + ("/" + subfolder if subfolder is not None else ""),
59
+ use_fast=False
60
+ )
61
+ ```
62
+
63
+ ### Loading the Weights with EasyLM
64
+ For using the weights in our EasyLM framework, please refer to the [LLaMA documentation of EasyLM](https://github.com/young-geng/EasyLM/blob/main/docs/llama.md). Note that unlike the original LLaMA model, our OpenLLaMA tokenizer and weights are trained completely from scratch so it is no longer needed to obtain the original LLaMA tokenizer and weights.
65
+
66
+
67
+
68
+ ## Dataset and Training
69
+
70
+ The v1 models are trained on the [RedPajama dataset](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T). The v2 models are trained on a mixture of the [Falcon refined-web dataset](https://huggingface.co/datasets/tiiuae/falcon-refinedweb), the [StarCoder dataset](https://huggingface.co/datasets/bigcode/starcoderdata) and the wikipedia, arxiv, book and stackexchange part of the [RedPajama dataset](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-1T). We follow the exactly same preprocessing steps and training hyperparameters as the original LLaMA paper, including model architecture, context length, training steps, learning rate schedule, and optimizer. The only difference between our setting and the original one is the dataset used: OpenLLaMA employs open datasets rather than the one utilized by the original LLaMA.
71
+
72
+ We train the models on cloud TPU-v4s using [EasyLM](https://github.com/young-geng/EasyLM), a JAX based training pipeline we developed for training and fine-tuning large language models. We employ a combination of normal data parallelism and fully sharded data parallelism [](https://engineering.fb.com/2021/07/15/open-source/fsdp/)(also know as ZeRO stage 3) to balance the training throughput and memory usage. Overall we reach a throughput of over 2200 tokens / second / TPU-v4 chip for our 7B model.
73
+
74
+
75
+ ## Evaluation
76
+
77
+ We evaluated OpenLLaMA on a wide range of tasks using [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness). The LLaMA results are generated by running the original LLaMA model on the same evaluation metrics. We note that our results for the LLaMA model differ slightly from the original LLaMA paper, which we believe is a result of different evaluation protocols. Similar differences have been reported in [this issue of lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/issues/443). Additionally, we present the results of GPT-J, a 6B parameter model trained on the [Pile](https://pile.eleuther.ai/) dataset by [EleutherAI](https://www.eleuther.ai/).
78
+
79
+ The original LLaMA model was trained for 1 trillion tokens and GPT-J was trained for 500 billion tokens. We present the results in the table below. OpenLLaMA exhibits comparable performance to the original LLaMA and GPT-J across a majority of tasks, and outperforms them in some tasks.
80
+
81
+
82
+ | **Task/Metric** | GPT-J 6B | LLaMA 7B | LLaMA 13B | OpenLLaMA 3Bv2 | OpenLLaMA 7Bv2 | OpenLLaMA 3B | OpenLLaMA 7B | OpenLLaMA 13B |
83
+ | ---------------------- | -------- | -------- | --------- | -------------- | -------------- | ------------ | ------------ | ------------- |
84
+ | anli_r1/acc | 0.32 | 0.35 | 0.35 | 0.33 | 0.34 | 0.33 | 0.33 | 0.33 |
85
+ | anli_r2/acc | 0.34 | 0.34 | 0.36 | 0.36 | 0.35 | 0.32 | 0.36 | 0.33 |
86
+ | anli_r3/acc | 0.35 | 0.37 | 0.39 | 0.38 | 0.39 | 0.35 | 0.38 | 0.40 |
87
+ | arc_challenge/acc | 0.34 | 0.39 | 0.44 | 0.34 | 0.39 | 0.34 | 0.37 | 0.41 |
88
+ | arc_challenge/acc_norm | 0.37 | 0.41 | 0.44 | 0.36 | 0.41 | 0.37 | 0.38 | 0.44 |
89
+ | arc_easy/acc | 0.67 | 0.68 | 0.75 | 0.68 | 0.73 | 0.69 | 0.72 | 0.75 |
90
+ | arc_easy/acc_norm | 0.62 | 0.52 | 0.59 | 0.63 | 0.70 | 0.65 | 0.68 | 0.70 |
91
+ | boolq/acc | 0.66 | 0.75 | 0.71 | 0.66 | 0.72 | 0.68 | 0.71 | 0.75 |
92
+ | hellaswag/acc | 0.50 | 0.56 | 0.59 | 0.52 | 0.56 | 0.49 | 0.53 | 0.56 |
93
+ | hellaswag/acc_norm | 0.66 | 0.73 | 0.76 | 0.70 | 0.75 | 0.67 | 0.72 | 0.76 |
94
+ | openbookqa/acc | 0.29 | 0.29 | 0.31 | 0.26 | 0.30 | 0.27 | 0.30 | 0.31 |
95
+ | openbookqa/acc_norm | 0.38 | 0.41 | 0.42 | 0.38 | 0.41 | 0.40 | 0.40 | 0.43 |
96
+ | piqa/acc | 0.75 | 0.78 | 0.79 | 0.77 | 0.79 | 0.75 | 0.76 | 0.77 |
97
+ | piqa/acc_norm | 0.76 | 0.78 | 0.79 | 0.78 | 0.80 | 0.76 | 0.77 | 0.79 |
98
+ | record/em | 0.88 | 0.91 | 0.92 | 0.87 | 0.89 | 0.88 | 0.89 | 0.91 |
99
+ | record/f1 | 0.89 | 0.91 | 0.92 | 0.88 | 0.89 | 0.89 | 0.90 | 0.91 |
100
+ | rte/acc | 0.54 | 0.56 | 0.69 | 0.55 | 0.57 | 0.58 | 0.60 | 0.64 |
101
+ | truthfulqa_mc/mc1 | 0.20 | 0.21 | 0.25 | 0.22 | 0.23 | 0.22 | 0.23 | 0.25 |
102
+ | truthfulqa_mc/mc2 | 0.36 | 0.34 | 0.40 | 0.35 | 0.35 | 0.35 | 0.35 | 0.38 |
103
+ | wic/acc | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.48 | 0.51 | 0.47 |
104
+ | winogrande/acc | 0.64 | 0.68 | 0.70 | 0.63 | 0.66 | 0.62 | 0.67 | 0.70 |
105
+ | Average | 0.52 | 0.55 | 0.57 | 0.53 | 0.56 | 0.53 | 0.55 | 0.57 |
106
+
107
+
108
+ We removed the task CB and WSC from our benchmark, as our model performs suspiciously high on these two tasks. We hypothesize that there could be a benchmark data contamination in the training set.
109
+
110
+
111
+ ## Contact
112
+
113
+ We would love to get feedback from the community. If you have any questions, please open an issue or contact us.
114
+
115
+ OpenLLaMA is developed by:
116
+ [Xinyang Geng](https://young-geng.xyz/)* and [Hao Liu](https://www.haoliu.site/)* from Berkeley AI Research.
117
+ *Equal Contribution
118
+
119
+
120
+
121
+ ## Acknowledgment
122
+
123
+ We thank the [Google TPU Research Cloud](https://sites.research.google/trc/about/) program for providing part of the computation resources. We’d like to specially thank Jonathan Caton from TPU Research Cloud for helping us organizing compute resources, Rafi Witten from the Google Cloud team and James Bradbury from the Google JAX team for helping us optimizing our training throughput. We’d also want to thank Charlie Snell, Gautier Izacard, Eric Wallace, Lianmin Zheng and our user community for the discussions and feedback.
124
+
125
+ The OpenLLaMA 13B v1 model is trained in collaboration with [Stability AI](https://stability.ai/), and we thank Stability AI for providing the computation resources. We’d like to especially thank David Ha and Shivanshu Purohit for the coordinating the logistics and providing engineering support.
126
+
127
+
128
+ ## Reference
129
+
130
+ If you found OpenLLaMA useful in your research or applications, please cite using the following BibTeX:
131
+ ```
132
+ @software{openlm2023openllama,
133
+ author = {Geng, Xinyang and Liu, Hao},
134
+ title = {OpenLLaMA: An Open Reproduction of LLaMA},
135
+ month = May,
136
+ year = 2023,
137
+ url = {https://github.com/openlm-research/open_llama}
138
+ }
139
+ ```
140
+ ```
141
+ @software{together2023redpajama,
142
+ author = {Together Computer},
143
+ title = {RedPajama-Data: An Open Source Recipe to Reproduce LLaMA training dataset},
144
+ month = April,
145
+ year = 2023,
146
+ url = {https://github.com/togethercomputer/RedPajama-Data}
147
+ }
148
+ ```
149
+ ```
150
+ @article{touvron2023llama,
151
+ title={Llama: Open and efficient foundation language models},
152
+ author={Touvron, Hugo and Lavril, Thibaut and Izacard, Gautier and Martinet, Xavier and Lachaux, Marie-Anne and Lacroix, Timoth{\'e}e and Rozi{\`e}re, Baptiste and Goyal, Naman and Hambro, Eric and Azhar, Faisal and others},
153
+ journal={arXiv preprint arXiv:2302.13971},
154
+ year={2023}
155
+ }
156
+ ```
157
+
158
+
159
+
160
+
161
+