File size: 4,130 Bytes
894702f 46ea769 894702f b6aecae 894702f b6aecae 894702f b6aecae 894702f b6aecae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 |
---
base_model: unsloth/mistral-7b-instruct-v0.1-bnb-4bit
tags:
- text-generation-inference
- transformers
- unsloth
- mistral
- trl
license: apache-2.0
language:
- en
datasets:
- Laurent1/MedQuad-MedicalQnADataset_128tokens_max
---
# Model Card for Mistral-7B-Instruct-v0.1-Unsloth-MedicalQA
<img src="https://files.oaiusercontent.com/file-SRkkqbc6KKUWGAfvWfrZpA?se=2025-01-11T20%3A14%3A07Z&sp=r&sv=2024-08-04&sr=b&rscc=max-age%3D604800%2C%20immutable%2C%20private&rscd=attachment%3B%20filename%3D9f951e1f-ad60-431b-b016-e4d79f30a3ab.webp&sig=PwbELJUHXlMlgk3T4MoDPH7nVYfPEXN0ypjadk1DuEc%3D" alt="drawing" width="400"/>
<font color="FF0000" size="5"><b>
This is a medical question-answering model fine-tuned for healthcare domain</b></font>
<br><b>Foundation Model: https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1<br/>
Dataset: https://huggingface.co/datasets/Laurent1/MedQuad-MedicalQnADataset_128tokens_max<br/></b>
The model has been fine-tuned using CUDA-enabled GPU hardware with optimized training through [Unsloth](https://github.com/unslothai/unsloth).
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="100"/>](https://github.com/unslothai/unsloth)
## Model Details
The model is based upon the foundation model: Mistral-7B-Instruct-v0.1.<br/>
It has been tuned with Supervised Fine-tuning Trainer using the Unsloth optimization framework for faster and more efficient training.
### Libraries
- unsloth
- transformers
- torch
- trl
- peft
- einops
- bitsandbytes
- datasets
## Training Configuration
### Model Parameters
- max_sequence_length = 2048
- load_in_4bit = True
- LoRA rank (r) = 32
- lora_alpha = 16
- lora_dropout = 0
### Target Modules for LoRA
- q_proj
- k_proj
- v_proj
- o_proj
- gate_proj
- up_proj
- down_proj
### Training Hyperparameters
- per_device_train_batch_size = 2
- gradient_accumulation_steps = 16
- warmup_steps = 5
- warmup_ratio = 0.03
- max_steps = 1600
- learning_rate = 1e-4
- weight_decay = 0.01
- lr_scheduler_type = "linear"
- optimizer = "paged_adamw_32bit"
## Training Statistics
### Hardware Utilization
- Training duration: 10,561.28 seconds (approximately 176.02 minutes)
- Peak reserved memory: 5.416 GB
- Peak reserved memory for training: 0.748 GB
- Peak reserved memory % of max memory: 13.689%
- Peak reserved memory for training % of max memory: 1.891%
### Dataset
The model was trained on the MedQuad dataset, which contains medical questions and answers. The training data was processed using a chat template format for instruction-tuning.
## Bias, Risks, and Limitations
<font color="FF0000">
Users (both direct and downstream) should be aware of the following:
1. This model is intended for medical question-answering but should not be used as a substitute for professional medical advice.
2. The model's responses should be verified by healthcare professionals before making any medical decisions.
3. Generation of plausible yet incorrect medical information remains a possibility.
4. The model's knowledge is limited to its training data and may not cover all medical conditions or recent medical developments.
</font>
## Usage
The model can be loaded and used with the Unsloth library:
```python
from unsloth import FastLanguageModel
max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
dtype = (
None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
)
model, tokenizer = FastLanguageModel.from_pretrained(
"bouthros/Mistral-7B-Instruct-v0.1-Unsloth-MedicalQA",
max_seq_length=2048,
load_in_4bit=True,
)
```
Example usage:
```python
messages = [
{"from": "human", "value": "What are the types of liver cancer?"},
]
inputs = tokenizer.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_tensors="pt"
).to("cuda")
```
## Model Access
The model is available on Hugging Face Hub at: bouthros/Mistral-7B-Instruct-v0.1-Unsloth-MedicalQA
## Citation
If you use this model, please cite the original Mistral-7B-Instruct-v0.1 model and the MedQuad dataset. |