--- language: en license: apache-2.0 tags: - audio-classification - generated_from_trainer metrics: - accuracy - f1 --- # Distil Audio Spectrogram Transformer AudioSet Distil Audio Spectrogram Transformer AudioSet is an audio classification model based on the [Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) architecture. This model is a distilled version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the [AudioSet](https://research.google.com/audioset/download.html) dataset. This model was trained using HuggingFace's PyTorch framework. All training was done on a Google Cloud Engine VM with a Tesla A100 GPU. All necessary scripts used for training could be found in the [Files and versions](https://huggingface.co/bookbot/distil-ast-audioset/tree/main) tab, as well as the [Training metrics](https://huggingface.co/bookbot/distil-ast-audioset/tensorboard) logged via Tensorboard. ## Model | Model | #params | Arch. | Training/Validation data | | --------------------- | ------- | ----------------------------- | ------------------------ | | `distil-ast-audioset` | 44M | Audio Spectrogram Transformer | AudioSet | ## Evaluation Results The model achieves the following results on evaluation: | Model | F1 | Roc Auc | Accuracy | mAP | | ------------------- | ------ | ------- | -------- | ------ | | Distil-AST AudioSet | 0.4876 | 0.7140 | 0.0714 | 0.4743 | | AST AudioSet | 0.4989 | 0.6905 | 0.1247 | 0.5603 | ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - `learning_rate`: 3e-05 - `train_batch_size`: 32 - `eval_batch_size`: 32 - `seed`: 0 - `gradient_accumulation_steps`: 4 - `total_train_batch_size`: 128 - `optimizer`: Adam with `betas=(0.9,0.999)` and `epsilon=1e-08` - `lr_scheduler_type`: linear - `lr_scheduler_warmup_ratio`: 0.1 - `num_epochs`: 10.0 - `mixed_precision_training`: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | Map | | :-----------: | :---: | :---: | :-------------: | :----: | :-----: | :------: | :----: | | 1.5521 | 1.0 | 153 | 0.7759 | 0.3929 | 0.6789 | 0.0209 | 0.3394 | | 0.7088 | 2.0 | 306 | 0.5183 | 0.4480 | 0.7162 | 0.0349 | 0.4047 | | 0.484 | 3.0 | 459 | 0.4342 | 0.4673 | 0.7241 | 0.0447 | 0.4348 | | 0.369 | 4.0 | 612 | 0.3847 | 0.4777 | 0.7332 | 0.0504 | 0.4463 | | 0.2943 | 5.0 | 765 | 0.3587 | 0.4838 | 0.7284 | 0.0572 | 0.4556 | | 0.2446 | 6.0 | 918 | 0.3415 | 0.4875 | 0.7296 | 0.0608 | 0.4628 | | 0.2099 | 7.0 | 1071 | 0.3273 | 0.4896 | 0.7246 | 0.0648 | 0.4682 | | 0.186 | 8.0 | 1224 | 0.3140 | 0.4888 | 0.7171 | 0.0689 | 0.4711 | | 0.1693 | 9.0 | 1377 | 0.3101 | 0.4887 | 0.7157 | 0.0703 | 0.4741 | | 0.1582 | 10.0 | 1530 | 0.3063 | 0.4876 | 0.7140 | 0.0714 | 0.4743 | ## Disclaimer Do consider the biases which came from pre-training datasets that may be carried over into the results of this model. ## Authors Distil Audio Spectrogram Transformer AudioSet was trained and evaluated by [Ananto Joyoadikusumo](https://anantoj.github.io), [David Samuel Setiawan](https://davidsamuell.github.io/), [Wilson Wongso](https://wilsonwongso.dev/). All computation and development are done on Google Cloud. ## Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.10.0 - Tokenizers 0.13.2