w11wo commited on
Commit
9d3f3b7
·
1 Parent(s): 95a05a3

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +53 -51
README.md CHANGED
@@ -1,75 +1,77 @@
1
  ---
2
- license: bsd-3-clause
 
3
  tags:
4
- - audio-classification
5
- - generated_from_trainer
6
  metrics:
7
- - f1
8
- - accuracy
9
- model-index:
10
- - name: distil-ast-audioset-2
11
- results: []
12
  ---
13
 
14
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
- should probably proofread and complete it, then remove this comment. -->
16
 
17
- # distil-ast-audioset-2
18
 
19
- This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the bookbot/audioset dataset.
20
- It achieves the following results on the evaluation set:
21
- - Loss: 0.3063
22
- - F1: 0.4876
23
- - Roc Auc: 0.7140
24
- - Accuracy: 0.0714
25
- - Map: 0.4743
26
 
27
- ## Model description
28
 
29
- More information needed
 
 
30
 
31
- ## Intended uses & limitations
32
 
33
- More information needed
34
 
35
- ## Training and evaluation data
36
-
37
- More information needed
 
38
 
39
  ## Training procedure
40
 
41
  ### Training hyperparameters
42
 
43
  The following hyperparameters were used during training:
44
- - learning_rate: 3e-05
45
- - train_batch_size: 32
46
- - eval_batch_size: 32
47
- - seed: 0
48
- - gradient_accumulation_steps: 4
49
- - total_train_batch_size: 128
50
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
- - lr_scheduler_type: linear
52
- - lr_scheduler_warmup_ratio: 0.1
53
- - num_epochs: 10.0
54
- - mixed_precision_training: Native AMP
 
55
 
56
  ### Training results
57
 
58
- | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | Map |
59
- |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:|:------:|
60
- | 1.5521 | 1.0 | 153 | 0.7759 | 0.3929 | 0.6789 | 0.0209 | 0.3394 |
61
- | 0.7088 | 2.0 | 306 | 0.5183 | 0.4480 | 0.7162 | 0.0349 | 0.4047 |
62
- | 0.484 | 3.0 | 459 | 0.4342 | 0.4673 | 0.7241 | 0.0447 | 0.4348 |
63
- | 0.369 | 4.0 | 612 | 0.3847 | 0.4777 | 0.7332 | 0.0504 | 0.4463 |
64
- | 0.2943 | 5.0 | 765 | 0.3587 | 0.4838 | 0.7284 | 0.0572 | 0.4556 |
65
- | 0.2446 | 6.0 | 918 | 0.3415 | 0.4875 | 0.7296 | 0.0608 | 0.4628 |
66
- | 0.2099 | 7.0 | 1071 | 0.3273 | 0.4896 | 0.7246 | 0.0648 | 0.4682 |
67
- | 0.186 | 8.0 | 1224 | 0.3140 | 0.4888 | 0.7171 | 0.0689 | 0.4711 |
68
- | 0.1693 | 9.0 | 1377 | 0.3101 | 0.4887 | 0.7157 | 0.0703 | 0.4741 |
69
- | 0.1582 | 10.0 | 1530 | 0.3063 | 0.4876 | 0.7140 | 0.0714 | 0.4743 |
70
-
71
-
72
- ### Framework versions
 
 
 
 
 
 
 
73
 
74
  - Transformers 4.27.0.dev0
75
  - Pytorch 1.13.1+cu117
 
1
  ---
2
+ language: en
3
+ license: apache-2.0
4
  tags:
5
+ - audio-classification
6
+ - generated_from_trainer
7
  metrics:
8
+ - accuracy
9
+ - f1
 
 
 
10
  ---
11
 
12
+ # Distil Audio Spectrogram Transformer AudioSet
 
13
 
14
+ Distil Audio Spectrogram Transformer AudioSet is an audio classification model based on the [Audio Spectrogram Transformer](https://arxiv.org/abs/2104.01778) architecture. This model is a distilled version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the [AudioSet](https://research.google.com/audioset/download.html) dataset.
15
 
16
+ This model was trained using HuggingFace's PyTorch framework. All training was done on a Google Cloud Engine VM with a Tesla A100 GPU. All necessary scripts used for training could be found in the [Files and versions](https://huggingface.co/bookbot/distil-ast-audioset/tree/main) tab, as well as the [Training metrics](https://huggingface.co/bookbot/distil-ast-audioset/tensorboard) logged via Tensorboard.
 
 
 
 
 
 
17
 
18
+ ## Model
19
 
20
+ | Model | #params | Arch. | Training/Validation data |
21
+ | --------------------- | ------- | ----------------------------- | ------------------------ |
22
+ | `distil-ast-audioset` | 44M | Audio Spectrogram Transformer | AudioSet |
23
 
24
+ ## Evaluation Results
25
 
26
+ The model achieves the following results on evaluation:
27
 
28
+ | Model | F1 | Roc Auc | Accuracy | mAP |
29
+ | ------------------- | ------ | ------- | -------- | ------ |
30
+ | Distil-AST AudioSet | 0.4876 | 0.7140 | 0.0714 | 0.4743 |
31
+ | AST AudioSet | 0.4989 | 0.6905 | 0.1247 | 0.5603 |
32
 
33
  ## Training procedure
34
 
35
  ### Training hyperparameters
36
 
37
  The following hyperparameters were used during training:
38
+
39
+ - `learning_rate`: 3e-05
40
+ - `train_batch_size`: 32
41
+ - `eval_batch_size`: 32
42
+ - `seed`: 0
43
+ - `gradient_accumulation_steps`: 4
44
+ - `total_train_batch_size`: 128
45
+ - `optimizer`: Adam with `betas=(0.9,0.999)` and `epsilon=1e-08`
46
+ - `lr_scheduler_type`: linear
47
+ - `lr_scheduler_warmup_ratio`: 0.1
48
+ - `num_epochs`: 10.0
49
+ - `mixed_precision_training`: Native AMP
50
 
51
  ### Training results
52
 
53
+ | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | Map |
54
+ | :-----------: | :---: | :---: | :-------------: | :----: | :-----: | :------: | :----: |
55
+ | 1.5521 | 1.0 | 153 | 0.7759 | 0.3929 | 0.6789 | 0.0209 | 0.3394 |
56
+ | 0.7088 | 2.0 | 306 | 0.5183 | 0.4480 | 0.7162 | 0.0349 | 0.4047 |
57
+ | 0.484 | 3.0 | 459 | 0.4342 | 0.4673 | 0.7241 | 0.0447 | 0.4348 |
58
+ | 0.369 | 4.0 | 612 | 0.3847 | 0.4777 | 0.7332 | 0.0504 | 0.4463 |
59
+ | 0.2943 | 5.0 | 765 | 0.3587 | 0.4838 | 0.7284 | 0.0572 | 0.4556 |
60
+ | 0.2446 | 6.0 | 918 | 0.3415 | 0.4875 | 0.7296 | 0.0608 | 0.4628 |
61
+ | 0.2099 | 7.0 | 1071 | 0.3273 | 0.4896 | 0.7246 | 0.0648 | 0.4682 |
62
+ | 0.186 | 8.0 | 1224 | 0.3140 | 0.4888 | 0.7171 | 0.0689 | 0.4711 |
63
+ | 0.1693 | 9.0 | 1377 | 0.3101 | 0.4887 | 0.7157 | 0.0703 | 0.4741 |
64
+ | 0.1582 | 10.0 | 1530 | 0.3063 | 0.4876 | 0.7140 | 0.0714 | 0.4743 |
65
+
66
+ ## Disclaimer
67
+
68
+ Do consider the biases which came from pre-training datasets that may be carried over into the results of this model.
69
+
70
+ ## Authors
71
+
72
+ Distil Audio Spectrogram Transformer AudioSet was trained and evaluated by [Ananto Joyoadikusumo](https://anantoj.github.io), [David Samuel Setiawan](https://davidsamuell.github.io/), [Wilson Wongso](https://wilsonwongso.dev/). All computation and development are done on Google Cloud.
73
+
74
+ ## Framework versions
75
 
76
  - Transformers 4.27.0.dev0
77
  - Pytorch 1.13.1+cu117