bluebird089
commited on
End of training
Browse files
README.md
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-4.0
|
3 |
+
base_model: MCG-NJU/videomae-base-finetuned-kinetics
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: videomae-base-finetuned-kinetics-final-contest-baole1-0705
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# videomae-base-finetuned-kinetics-final-contest-baole1-0705
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [MCG-NJU/videomae-base-finetuned-kinetics](https://huggingface.co/MCG-NJU/videomae-base-finetuned-kinetics) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.3916
|
21 |
+
- Accuracy: 0.9087
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 9e-05
|
41 |
+
- train_batch_size: 4
|
42 |
+
- eval_batch_size: 4
|
43 |
+
- seed: 42
|
44 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
+
- lr_scheduler_type: linear
|
46 |
+
- lr_scheduler_warmup_ratio: 0.1
|
47 |
+
- training_steps: 2057
|
48 |
+
|
49 |
+
### Training results
|
50 |
+
|
51 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
52 |
+
|:-------------:|:-------:|:----:|:---------------:|:--------:|
|
53 |
+
| 0.641 | 0.0914 | 188 | 0.9443 | 0.7178 |
|
54 |
+
| 0.1614 | 1.0914 | 376 | 0.4797 | 0.8340 |
|
55 |
+
| 0.0883 | 2.0914 | 564 | 0.4375 | 0.8672 |
|
56 |
+
| 0.0963 | 3.0914 | 752 | 0.4745 | 0.8797 |
|
57 |
+
| 0.0168 | 4.0914 | 940 | 0.4087 | 0.8880 |
|
58 |
+
| 0.0011 | 5.0914 | 1128 | 0.3451 | 0.8880 |
|
59 |
+
| 0.0009 | 6.0914 | 1316 | 0.4118 | 0.8838 |
|
60 |
+
| 0.0007 | 7.0914 | 1504 | 0.3856 | 0.9046 |
|
61 |
+
| 0.0008 | 8.0914 | 1692 | 0.4004 | 0.8963 |
|
62 |
+
| 0.0006 | 9.0914 | 1880 | 0.4079 | 0.8963 |
|
63 |
+
| 0.0005 | 10.0860 | 2057 | 0.3916 | 0.9087 |
|
64 |
+
|
65 |
+
|
66 |
+
### Framework versions
|
67 |
+
|
68 |
+
- Transformers 4.40.2
|
69 |
+
- Pytorch 1.13.1+cu117
|
70 |
+
- Datasets 2.18.0
|
71 |
+
- Tokenizers 0.19.1
|