|
from typing import Dict, List, Any |
|
|
|
import torch |
|
from transformers import pipeline, XLMRobertaTokenizerFast, XLMRobertaForSequenceClassification |
|
|
|
|
|
class EndpointHandler: |
|
def __init__(self, path=""): |
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
model = XLMRobertaForSequenceClassification.from_pretrained(path) |
|
tokenizer = XLMRobertaTokenizerFast.from_pretrained(path) |
|
model.eval() |
|
|
|
self.pipline = pipeline("text-classification", tokenizer=tokenizer, model=model, device=self.device) |
|
|
|
def __call__(self, data: Any) -> List[List[Dict[str, float]]]: |
|
""" |
|
Args: |
|
data (:obj:): |
|
includes the input data and the parameters for the inference. |
|
Return: |
|
A :obj:`list`:. The object returned should be a list of one list like [[{"label": 0.9939950108528137}]] containing : |
|
- "label": A string representing what the label/class is. There can be multiple labels. |
|
- "score": A score between 0 and 1 describing how confident the model is for this label/class. |
|
""" |
|
inputs = data.pop("inputs", data) |
|
parameters = data.pop("parameters", None) |
|
|
|
|
|
if parameters is not None: |
|
prediction = self.pipline(inputs, **parameters) |
|
else: |
|
prediction = self.pipline(inputs) |
|
|
|
return [{"label": p["label"]} for p in prediction] |
|
|