File size: 1,541 Bytes
ac1072f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
---
language:
- ru
tags:
- sentiment
- text-classification
datasets:
- RuTweetCorp
---
# RuBERT for Sentiment Analysis of Tweets
This is a [DeepPavlov/rubert-base-cased-conversational](https://huggingface.co/DeepPavlov/rubert-base-cased-conversational) model trained on [RuTweetCorp](https://study.mokoron.com/).
## Labels
0: POSITIVE
1: NEGATIVE
## How to use
```python
import torch
from transformers import AutoModelForSequenceClassification
from transformers import BertTokenizerFast
tokenizer = BertTokenizerFast.from_pretrained('blanchefort/rubert-base-cased-sentiment-mokoron')
model = AutoModelForSequenceClassification.from_pretrained('blanchefort/rubert-base-cased-sentiment-mokoron', return_dict=True)
@torch.no_grad()
def predict(text):
inputs = tokenizer(text, max_length=512, padding=True, truncation=True, return_tensors='pt')
outputs = model(**inputs)
predicted = torch.nn.functional.softmax(outputs.logits, dim=1)
predicted = torch.argmax(predicted, dim=1).numpy()
return predicted
```
## Dataset used for model training
**[RuTweetCorp](https://study.mokoron.com/)**
> Рубцова Ю. Автоматическое построение и анализ корпуса коротких текстов (постов микроблогов) для задачи разработки и тренировки тонового классификатора // Инженерия знаний и технологии семантического веба. – 2012. – Т. 1. – С. 109-116.
|