--- language: - sv license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: whisper-large-sv results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: sv-SE split: train[:1%]+validation[:1%] args: sv-SE metrics: - name: Wer type: wer value: 30.935251798561154 --- # whisper-large-sv This model is a fine-tuned version of [openai/whisper-large](https://huggingface.co/openai/whisper-large) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 1.5259 - Wer: 30.9353 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1 - training_steps: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 4.5521 | 0.04 | 5 | 3.5048 | 48.2014 | | 1.8009 | 0.08 | 10 | 1.5259 | 30.9353 | ### Framework versions - Transformers 4.25.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.6.1 - Tokenizers 0.13.1