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1. Introduction

Addressing Planetary Biodiversity
Our planet is in transition; air temperatures are rising, rainfall 
patterns are shifting, and ice is retreating. These changes are 
restructuring ecosystems around the world, creating the need 
for approaches which can track biodiversity change at large 
geographic scales. Because of the exponential rise in the 
power of both DNA sequencers and computational technology, 
DNA-based identification systems can meet this need. In fact, 
they can do more; they can disclose the intensity, nature, and 
flux of interactions among the constellation of species present 
at each locality. 

The shift to DNA-based identification systems makes it possible 
to ascertain the species composition of mass collections, 
permitting biodiversity surveys with unprecedented taxonomic 
resolution and at hitherto impossible temporal and spatial 
scales. It also enables a rapid answer to a previously intractable 
question – how many species share our planet? Finally, it 
provides a new pathway, symbiome analysis, to both reveal 
and investigate interactions among species. It achieves this by 
linking every sequence recovered from a particular specimen to 
its source, be it commensal, parasite or mutualist. 

International Organization
The International Barcode of Life (iBOL) Consortium, an 
alliance of research organizations in 30+ nations, began to 
lay the foundational elements for a DNA-based identification 
system for eukaryotes in 2010. By 2015, it had completed 
its first project, BARCODE 500K, a $125 million effort that 
delivered DNA barcode coverage for 500,000 species. In June 
2019, iBOL launched BIOSCAN, a 7-year, $180 million project 
that will ascertain species assemblages at 2,000 sites around 
the planet, while also examining the interactions among the 
species present at these locations. 

Our understanding of the physical world has been revolutionized 
by technology; shifts in surface features are now sensed by 
satellite and hyperspectral imaging. High-throughput sequencers 
represent the technology that will transform our understanding 
of the biological world by detailing species interactions and by 
allowing ecosystem appraisal on a planetary scale. BIOSCAN 
lays the foundation for this transformation. Its successor, the 
PLANETARY BIODIVERSITY MISSION, will complete it; all 
species will be registered, all ecosystems will be monitored, and 
all species interactions will be codified.

Outcome
By registering patterns of biodiversity across ecoregions, BIOSCAN will make it possible to forecast changes in response to 
anthropogenic drivers such as shifting land use, pollution, and global warming. It will also deepen our understanding of species 
interactions by probing the symbiome, a new approach that employs the array of mitochondrial sequences recovered from any 
specimen to diagnose the species associated with it. Although BIOSCAN’s initial studies will target terrestrial environments, the 
resultant protocols will soon see adoption in freshwater and marine ecosystems.

BarcodeMamba was developed to support BIOSCAN’s mission of establishing a global
biodiversity observation system through DNA barcoding.

DNA barcodes are genetic markers that enable efficient species identification by analyzing short, stan-
dardized sections of DNA rather than entire genomes. While transformers and state space models (SSMs)
have advanced human genome analysis, identifying invertebrate species from DNA barcodes
remains challenging due to complex taxonomic relationships and unknown species. BarcodeBERT, a
transformer-based foundation model, has been the state-of-the-art solution for these challenges. How-
ever, its attention mechanism has quadratic complexity, resulting in substantial computational costs at
scale. Building on the success of BarcodeBERT, we present BarcodeMamba, an efficient and per-
formant foundation model that leverages the state-of-the-art Mamba-2 architecture to advance biodi-
versity analysis. Our comprehensive evaluation demonstrates BarcodeMamba’s superior performance in
both known species classification (99.2% accuracy) and zero-shot identification of unknown species (70.2%
genus-level accuracy), while using only 8.3% of BarcodeBERT’s parameters. Through extensive
experiments comparing architectures, analyzing components, and studying scaling behaviours, we show
BarcodeMamba’s potential for accelerating biodiversity research.

2. Background
• Mamba introduces selective state processing to se-

quence modeling, allowing it to efficiently handle im-
portant information while filtering out noise — a key
capability for analyzing complex biological sequences.

• Mamba-2 enhances this foundation by integrating
state space modeling and attention mechanisms, en-
abling better capture of relationships between different
parts of DNA sequences.

• These advances are particularly valuable for DNA bar-
coding where:

– Missing or uncertain nucleotides create gaps in
sequences

– Large-scale processing requires efficient
hardware-aware computation

– Complex patterns need to be recognized across
different species

3. Method: Design choices
Data augmentation. Reverse Complement (RC) data

augmentation during pretraining
Tokenization. Char-level: learning at single nucleotide

resolution; k-mer: capturing local patterns
Pretraining objectives. Next token prediction (NTP),

preferred by causal models; Masked language model-
ing (MLM), successfully applied in BarcodeBERT and
Caduceus (built upon MambaDNA blocks)

Original 
Sequence

Token 
Embedding 

Pretrain with
NTP

Linear Classifier 

Character-level tokenization

Target

Data

Next Token Prediction 

G T A G G A A C …

E[G] E[T] E[A] E[G] E[G] E[A] E[A] E[C] …

E[T] E[A] E[G] E[G] E[A] E[A] E[C] E[EOS]…

Mamba-2 
Layer

x n_layers

E[G] E[T] E[A] E[G] E[G] E[A] E[A] E[C] E[EOS]…
t1 t2 t3 t4 t5 t6 t7 t8 tL

Classification 
Layer

Classification result of each token

Model Output Yt1 Yt2 Yt3 Yt4 Yt5 Yt6 Yt7 Yt8 … YtL

Input Sequence 

GTAGGAAC…

K-mer tokenization (k=6)

Next Token Prediction 

GTAGGA  ACTTCA  TTAAGA  ATTTTA…

x n_layers

E[GTAGGA] E[ACTTCA] E[TTAAGA] E[ATTTTA] E[EOS]…
t1 t2 t3 t4 tL

Classification result of each token

Yt1 Yt2 Yt3 Yt4 YtL…

E[GTAGGA] E[ACTTCA] E[TTAAGA] E[ATTTTA] …

E[ACTTCA] E[TTAAGA] E[ATTTTA] E[EOS]…Target

Data

GTAGGAACTTCATTAAGAATTTTA…

Mamba-2 
Layer

Classification 
Layer

Original 
Sequence

Token
Embedding

Pretrain with 
NTP

Linear Classifier 

Model Output

Input Sequence 

4. Comparison with baselines
Species-level acc (%)

of seen species
Genus-level acc (%)

of unseen species
Model Fine-tuned Linear probe 1-NN probe Params
DNABERT-2 98.3 87.2 40.9 118.9 M
DNABERT (k=6) 97.4 (k=4) 47.1 (k=6) 48.5 88.1-91.1 M
Caduceus-PS-131k 97.6 5.1 21.1 14.0 M
Caduceus-PH-131k 96.7 2.7 19.3 14.0 M
Caduceus-PS-1k 98.8 16.8 31.4 3.5 M
Caduceus-PH-1k 98.8 6.2 23.1 3.5 M
HyenaDNA-small 98.5 75.2 46.1 3.3 M
HyenaDNA-tiny 99.1 93.5 47.0 1.6 M
CNN encoder 98.2 51.8 47.0 1.8 M
BarcodeBERT (k=6) 98.1 (k=4) 93.0 (k=5) 58.4 86.2-89.2 M
BarcodeMamba-2-large (ours) (k=6) 97.7 (k=1) 99.2 (k=6) 70.2 50.4-56.7 M
BarcodeMamba-2-mini (ours) (k=1) 97.7 (k=1) 99.2 (k=6) 63.2 4.3-7.4 M

We evaluate BarcodeMamba’s performance
through three increasingly challenging
tasks:
1. Traditional Classification (Fine-

tuned): Full model training for known
species id.

2. Representation Quality (Linear
probe): Tests learned representations
with a simple classifier.

3. Unknown Species Detection (1-NN
probe): Identifies new species to the
genus level.

In the more challenging test of SSL-trained representations (Linear Probe and 1-NN Probe), improving on Bar-
codeBERT, our results demonstrate a substantial improvement compared to all other models. Our BarcodeMamba
model exhibits superior performance to BarcodeBERT with less than 7.4 M parameters (vs. 86.2–89.2 M)
demonstrating both effectiveness and efficiency.

5. Ablation study
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Fine-tuned Linear probe 1-NN probe Perplexity
Tokenizer k Mamba Mamba-2 Mamba Mamba-2 Mamba Mamba-2 Mamba Mamba-2
Char - 98.7 98.1 97.0 95.9 41.2 33.0 1.41 1.37
k-mer 4 95.0 97.4 92.9 94.0 43.5 55.3 3.19 3.09
k-mer 5 94.2 95.6 91.5 92.6 48.5 57.7 4.16 4.04
k-mer 6 95.9 96.5 91.8 91.9 47.7 58.7 5.51 5.31
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Fine-tuned Linear probe 1-NN probe Perplexity
Tokenizer k Mamba Mamba-2 Mamba Mamba-2 Mamba Mamba-2 Mamba Mamba-2
Char - 88.4 98.2 91.8 91.5 32.1 38.7 1.23 1.22
k-mer 4 97.3 96.6 94.0 94.3 47.4 50.4 1.89 1.86
k-mer 5 97.1 97.5 92.9 93.1 52.2 51.9 2.20 2.17
k-mer 6 96.7 95.4 92.7 92.7 54.5 51.0 2.46 2.45

Architecture:
• For both pretraining tasks, Mamba-2

performs better as the mixing layer.
Tokenization:

• The character-level tokenizer en-
hances the known species classifica-
tion of BarcodeMamba (Fine-tuned,
Linear Probe).

• For 1-NN probing, k-mer tokeniza-
tion enables BarcodeMamba to
achieve significantly better results.

Overall, both tokenizers demonstrate that
next token prediction (NTP) consistently
outperforms masked language modeling
(MLM) for BarcodeMamba.

6. Scaling study
Performance Scaling on NTP pretraining:

• Linear probe accuracy reaches 99.4% at 30M parameters
• Unknown species detection (1-NN) improves steadily to 70.2%

at 56.7M parameters
• Both tokenization strategies (character-level and k-mer, k=6)

show consistent improvements with scale
Key Findings:

• Larger models particularly benefit unknown species detection
• Performance gains continue even at largest tested size (56.7M

param)
• Maintains efficiency advantage over BarcodeBERT across all

scales
Future Impact: Scaling behavior suggests potential for improving
global species identification. Future work will evaluate performance
beyond Canadian invertebrates.

7. Conclusions
Key Achievements:

• Successfully applied state space models to DNA barcode analysis, improving Barcode-
BERT’s taxonomic classification performance with only 8.3% of its parameters.

Impact for Biodiversity Science:
• Enables more efficient processing of DNA barcodes for taxonomic classification
• Improves accuracy of both known and unknown species identification
• Supports BIOSCAN’s mission of global biodiversity monitoring

Future Directions:
• Scale to BIOSCAN-5M dataset (5M arthropod specimens)
• Explore bi-directional architectures for improved accuracy
• Develop robust variants for additional barcode markers (e.g., fungal ITS)

Scan the code
to see our
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