BarcodeMamba: State Space Models for Biodiversity Analysis
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1. Introduction

DNA barcodes are genetic markers that enable efficient species identification by analyzing short, stan-
dardized sections of DNA rather than entire genomes. While transformers and state space models (SSMs)
have advanced human genome analysis, identifying invertebrate species from DNA barcodes
remains challenging due to complex taxonomic relationships and unknown species. BarcodeBERT, a
transformer-based foundation model, has been the state-of-the-art solution for these challenges. How-

. BIOSCAN ever, its attention mechanism has quadratic complexity, resulting in substantial computational costs at
2019 scale. Building on the success of BarcodeBERT, we present BarcodeMamba, an efficient and per-
T formant foundation model that leverages the state-of-the-art Mamba-2 architecture to advance biodi-
JJj BARCODE 500K versity analysis. Our comprehensive evaluation demonstrates BarcodeMamba’s superior performance in
2010 both known species classification (99.2% accuracy) and zero-shot identification of unknown species (70.2%

genus-level accuracy), while using only 8.3% of BarcodeBERT’s parameters. Through extensive

experiments comparing architectures, analyzing components, and studying scaling behaviours, we show

BarcodeMamba was developed to support BIOSCAN's mission of establishing a global BarcodeMamba’s potential for accelerating biodiversity research.
biodiversity observation system through DNA barcoding.

2. Background 4. Comparison with baselines
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hardware-aware computation
— Complex patterns need to be recognized across
different species

In the more challenging test of SSL.-trained representations (Linear Probe and 1-NN Probe), improving on Bar-
codeBERT, our results demonstrate a substantial improvement compared to all other models. Our BarcodeMamba
model exhibits superior performance to BarcodeBERT with less than 7.4 M parameters (vs. 86.2—-89.2 M)
demonstrating both effectiveness and efficiency.

3. Method: Design choices

. Ablation study

Data augmentation. Reverse Complement (RC) data
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Layer Key Achievements:

Clacification rejltofeachtoken o Successfully applied state space models to DNA barcode analysis, improving Barcode-
BERT’s taxonomic classification performance with only 8.3% of its parameters. Scan the code
Impact for Biodiversity Science: to see our )

e Enables more efficient processing of DNA barcodes for taxonomic classification repository
e Improves accuracy of both known and unknown species identification
e« Supports BIOSCAN’s mission of global biodiversity monitoring
Future Directions:
e Scale to BIOSCAN-5M dataset (5M arthropod specimens)
e Explore bi-directional architectures for improved accuracy
e Develop robust variants for additional barcode markers (e.g., fungal I'TS)

8. Acknowledgements

CIFAR  Bwl S Soaemeren

BIOSCAN is supported in part by funding from the Govern-
ment of Canada’s New Frontiers in Research Fund (NFRF).




