Muennighoff commited on
Commit
8e8ddc4
·
1 Parent(s): 424904b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +15 -25
README.md CHANGED
@@ -6,38 +6,19 @@ tags:
6
  - sentence-similarity
7
  ---
8
 
9
- # {MODEL_NAME}
10
-
11
- This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 4096 dimensional dense vector space and can be used for tasks like clustering or semantic search.
12
-
13
- <!--- Describe your model here -->
14
-
15
  ## Usage (Sentence-Transformers)
16
 
17
- Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
18
-
19
- ```
20
- pip install -U sentence-transformers
21
- ```
22
-
23
- Then you can use the model like this:
24
-
25
- ```python
26
- from sentence_transformers import SentenceTransformer
27
- sentences = ["This is an example sentence", "Each sentence is converted"]
28
 
29
- model = SentenceTransformer('{MODEL_NAME}')
30
- embeddings = model.encode(sentences)
31
- print(embeddings)
32
  ```
33
 
34
-
35
-
36
  ## Evaluation Results
37
 
38
- <!--- Describe how your model was evaluated -->
39
 
40
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
41
 
42
 
43
  ## Training
@@ -50,6 +31,8 @@ The model was trained with the parameters:
50
  {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
51
  ```
52
 
 
 
53
  **Loss**:
54
 
55
  `sentence_transformers.losses.MultipleNegativesRankingLoss.MNRLGradCache`
@@ -83,4 +66,11 @@ SentenceTransformer(
83
 
84
  ## Citing & Authors
85
 
86
- <!--- Describe where people can find more information -->
 
 
 
 
 
 
 
 
6
  - sentence-similarity
7
  ---
8
 
 
 
 
 
 
 
9
  ## Usage (Sentence-Transformers)
10
 
11
+ For usage instructions, refer to: https://github.com/Muennighoff/sgpt#asymmetric-semantic-search
 
 
 
 
 
 
 
 
 
 
12
 
13
+ The model was trained with the command
14
+ ```bash
15
+ CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 accelerate launch examples/training/ms_marco/train_bi-encoder_mnrl.py --model_name bigscience/bloom-7b1 --train_batch_size 32 --eval_batch_size 16 --freezenonbias --specb --lr 4e-4 --wandb --wandbwatchlog gradients --pooling weightedmean --gradcache --chunksize 8
16
  ```
17
 
 
 
18
  ## Evaluation Results
19
 
 
20
 
21
+ `{"ndcgs": {"sgpt-bloom-7b1-msmarco": {"scifact": {"NDCG@10": 0.71824}, "nfcorpus": {"NDCG@10": 0.35748}, "arguana": {"NDCG@10": 0.47281}, "scidocs": {"NDCG@10": 0.18435}, "fiqa": {"NDCG@10": 0.35736}, "cqadupstack": {"NDCG@10": 0.3708525}, "quora": {"NDCG@10": 0.74655}, "trec-covid": {"NDCG@10": 0.82731}, "webis-touche2020": {"NDCG@10": 0.2365}}}`
22
 
23
 
24
  ## Training
 
31
  {'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
32
  ```
33
 
34
+ The model uses BitFit, weighted-mean pooling & GradCache, for details see: https://arxiv.org/abs/2202.08904
35
+
36
  **Loss**:
37
 
38
  `sentence_transformers.losses.MultipleNegativesRankingLoss.MNRLGradCache`
 
66
 
67
  ## Citing & Authors
68
 
69
+ ```bibtex
70
+ @article{muennighoff2022sgpt,
71
+ title={SGPT: GPT Sentence Embeddings for Semantic Search},
72
+ author={Muennighoff, Niklas},
73
+ journal={arXiv preprint arXiv:2202.08904},
74
+ year={2022}
75
+ }
76
+ ```