--- tags: - autotrain - text-classification language: - it widget: - text: "I love AutoTrain 🤗" datasets: - davanstrien/autotrain-data-cultural_heritage_metadata_accuracy co2_eq_emissions: emissions: 7.171395981202868 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 48840118272 - CO2 Emissions (in grams): 7.1714 ## Validation Metrics - Loss: 0.085 - Accuracy: 0.972 - Macro F1: 0.972 - Micro F1: 0.972 - Weighted F1: 0.972 - Macro Precision: 0.972 - Micro Precision: 0.972 - Weighted Precision: 0.972 - Macro Recall: 0.972 - Micro Recall: 0.972 - Weighted Recall: 0.972 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' /static-proxy?url=https%3A%2F%2Fapi-inference.huggingface.co%2Fmodels%2Fdavanstrien%2Fautotrain-cultural_heritage_metadata_accuracy-48840118272 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("davanstrien/autotrain-cultural_heritage_metadata_accuracy-48840118272", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("davanstrien/autotrain-cultural_heritage_metadata_accuracy-48840118272", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```