--- pipeline_tag: text-generation inference: true widget: - text: 'def print_hello_world():' example_title: Hello world group: Python license: bigcode-openrail-m datasets: - bigcode/the-stack-dedup metrics: - code_eval library_name: transformers tags: - code model-index: - name: Tiny-StarCoder-Py results: - task: type: text-generation dataset: type: openai_humaneval name: HumanEval metrics: - name: pass@1 type: pass@1 value: 7.84% verified: false --- # TinyStarCoderPy This is a 164M parameters model with the same architecture as [StarCoder](https://huggingface.co/bigcode/starcoder) (8k context length, MQA & FIM). It was trained on the Python data from [StarCoderData](https://huggingface.co/datasets/bigcode/starcoderdata) for ~6 epochs which amounts to 100B tokens. ## Use ### Intended use The model was trained on GitHub code, to assist with some tasks like [Assisted Generation](https://huggingface.co/blog/assisted-generation). For pure code completion, we advise using our 15B models [StarCoder]() or [StarCoderBase](). ### Generation ```python # pip install -q transformers from transformers import AutoModelForCausalLM, AutoTokenizer checkpoint = "bigcode/tiny_starcoder_py" device = "cuda" # for GPU usage or "cpu" for CPU usage tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device) inputs = tokenizer.encode("def print_hello_world():", return_tensors="pt").to(device) outputs = model.generate(inputs) print(tokenizer.decode(outputs[0])) ``` ### Fill-in-the-middle Fill-in-the-middle uses special tokens to identify the prefix/middle/suffix part of the input and output: ```python input_text = "def print_one_two_three():\n print('one')\n \n print('three')" inputs = tokenizer.encode(input_text, return_tensors="pt").to(device) outputs = model.generate(inputs) print(tokenizer.decode(outputs[0])) ``` # Training ## Model - **Architecture:** GPT-2 model with multi-query attention and Fill-in-the-Middle objective - **Pretraining steps:** 50k - **Pretraining tokens:** 100 billion - **Precision:** bfloat16 ## Hardware - **GPUs:** 32 Tesla A100 - **Training time:** 18 hours ## Software - **Orchestration:** [Megatron-LM](https://github.com/bigcode-project/Megatron-LM) - **Neural networks:** [PyTorch](https://github.com/pytorch/pytorch) - **BP16 if applicable:** [apex](https://github.com/NVIDIA/apex) # License The model is licensed under the BigCode OpenRAIL-M v1 license agreement. You can find the full agreement [here](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement).