loubnabnl HF staff commited on
Commit
46979ae
·
1 Parent(s): 3243a70

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +64 -3
README.md CHANGED
@@ -18,8 +18,69 @@ model-index:
18
  value: 7.84%
19
  verified: false
20
  ---
21
- 159M model with the same architecture and tokenizer as StarCoder (8k context length) pre-trained on 100B tokens of Python from StarCoderData (~6 epochs)
22
 
23
- Full training arguments + loss at: https://wandb.ai/loubnabnl/tiny_starcoder/runs/qogbxkgy/overview?workspace=user-loubnabnl
24
 
25
- Pass@1: 7.84%
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
  value: 7.84%
19
  verified: false
20
  ---
 
21
 
22
+ # TinyPyStarCoder
23
 
24
+ This is a 159M parameters model with teh same architecture as [StarCoder]() (8k context length, MQA & FIM). It was trained on the Python data from StarCoderData]()
25
+ for ~6 epochs which amounts to 100B tokens.
26
+
27
+
28
+ ## Use
29
+
30
+ ### Intended use
31
+
32
+ The model was trained on GitHub code, to assist with some tasks like [Assisted Generation](https://huggingface.co/blog/assisted-generation). For pure code completion, we advise using our 15B models [StarCoder]() or [StarCoderBase]().
33
+
34
+
35
+ ### Generation
36
+ ```python
37
+ # pip install -q transformers
38
+ from transformers import AutoModelForCausalLM, AutoTokenizer
39
+
40
+ checkpoint = "bigcode/tiny_pystarcoder"
41
+ device = "cuda" # for GPU usage or "cpu" for CPU usage
42
+
43
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint)
44
+ model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
45
+
46
+ inputs = tokenizer.encode("def print_hello_world():", return_tensors="pt").to(device)
47
+ outputs = model.generate(inputs)
48
+ print(tokenizer.decode(outputs[0]))
49
+ ```
50
+
51
+ ### Fill-in-the-middle
52
+ Fill-in-the-middle uses special tokens to identify the prefix/middle/suffix part of the input and output:
53
+
54
+ ```python
55
+ input_text = "<fim-prefix>def print_hello_world():\n <fim-suffix>\n print('Hello world!')<fim-middle>"
56
+ inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
57
+ outputs = model.generate(inputs)
58
+ print(tokenizer.decode(outputs[0]))
59
+ ```
60
+
61
+ # Limitations
62
+
63
+ The model has been trained on source code from 80+ programming languages. The predominant natural language in source code is English although other languages are also present. As such the model is capable of generating code snippets provided some context but the generated code is not guaranteed to work as intended. It can be inefficient, contain bugs or exploits. See [the paper](https://drive.google.com/file/d/1cN-b9GnWtHzQRoE7M7gAEyivY0kl4BYs/view) for an in-depth discussion of the model limitations.
64
+
65
+ # Training
66
+
67
+ ## Model
68
+
69
+ - **Architecture:** GPT-2 model with multi-query attention and Fill-in-the-Middle objective
70
+ - **Pretraining steps:** 50k
71
+ - **Pretraining tokens:** 100 billion
72
+ - **Precision:** bfloat16
73
+
74
+ ## Hardware
75
+
76
+ - **GPUs:** 32 Tesla A100
77
+ - **Training time:** 18 hours
78
+
79
+ ## Software
80
+
81
+ - **Orchestration:** [Megatron-LM](https://github.com/bigcode-project/Megatron-LM)
82
+ - **Neural networks:** [PyTorch](https://github.com/pytorch/pytorch)
83
+ - **BP16 if applicable:** [apex](https://github.com/NVIDIA/apex)
84
+
85
+ # License
86
+ The model is licensed under the BigCode OpenRAIL-M v1 license agreement. You can find the full agreement [here](https://huggingface.co/spaces/bigcode/bigcode-model-license-agreement).